Karen M Rodrigue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4684871/publications.pdf

Version: 2024-02-01

82 papers 11,637 citations

66343 42 h-index 81 g-index

90 all docs

90 docs citations

times ranked

90

13074 citing authors

#	Article	IF	CITATIONS
1	Prevalence Estimates of Amyloid Abnormality Across the Alzheimer Disease Clinical Spectrum. JAMA Neurology, 2022, 79, 228.	9.0	97
2	Aerobic exercise training and neurocognitive function in cognitively normal older adults: A oneâ€year randomized controlled trial. Journal of Internal Medicine, 2022, 292, 788-803.	6.0	14
3	Cortical thickness mediates the relationship between DRD2 C957T polymorphism and executive function across the adult lifespan. Brain Structure and Function, 2021, 226, 121-136.	2.3	3
4	Influence of sample size and analytic approach on stability and interpretation of brainâ€behavior correlations in taskâ€related ⟨scp⟩fMRI⟨/scp⟩ data. Human Brain Mapping, 2021, 42, 204-219.	3.6	93
5	Greater BOLD Variability is Associated With Poorer Cognitive Function in an Adult Lifespan Sample. Cerebral Cortex, 2021, 31, 562-574.	2.9	23
6	Functional Connectivity Within and Between <i>n</i> -Back Modulated Regions: An Adult Lifespan Psychophysiological Interaction Investigation. Brain Connectivity, 2021, 11, 103-118.	1.7	8
7	The effect of vascular health factors on white matter microstructure mediates age-related differences in executive function performance. Cortex, 2021, 141, 403-420.	2.4	11
8	Contributions of White Matter Connectivity and BOLD Modulation to Cognitive Aging: A Lifespan Structure-Function Association Study. Cerebral Cortex, 2020, 30, 1649-1661.	2.9	20
9	The association between BOLD-based cerebrovascular reactivity (CVR) and end-tidal CO2 in healthy subjects. Neurolmage, 2020, 207, 116365.	4.2	23
10	Beta-amyloid burden predicts poorer mnemonic discrimination in cognitively normal older adults. Neurolmage, 2020, 221, 117199.	4.2	13
11	Contribution of iron and $\hat{A^2}$ to age differences in entorhinal and hippocampal subfield volume. Neurology, 2020, 95, e2586-e2594.	1.1	11
12	White Matter Microstructure Predicts Focal and Broad Functional Brain Dedifferentiation in Normal Aging. Journal of Cognitive Neuroscience, 2020, 32, 1536-1549.	2.3	7
13	Frontostriatal white matter connectivity: age differences and associations with cognition and BOLD modulation. Neurobiology of Aging, 2020, 94, 154-163.	3.1	7
14	Striatal iron content is linked to reduced fronto-striatal brain function under working memory load. Neurolmage, 2020, 210, 116544.	4.2	23
15	The role of hippocampal subfield volume and fornix microstructure in episodic memory across the lifespan. Hippocampus, 2019, 29, 1206-1223.	1.9	30
16	Progress update from the hippocampal subfields group. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11, 439-449.	2.4	34
17	Joint contributions of cortical morphometry and white matter microstructure in healthy brain aging: A partial least squares correlation analysis. Human Brain Mapping, 2019, 40, 5315-5329.	3.6	35
18	ASLâ€MRICloud: An online tool for the processing of ASL MRI data. NMR in Biomedicine, 2019, 32, e4051.	2.8	33

#	Article	IF	Citations
19	Genetic predisposition for inflammation exacerbates effects of striatal iron content on cognitive switching ability in healthy aging. Neurolmage, 2019, 185, 471-478.	4.2	14
20	Frontoparietal cortical thickness mediates the effect of COMT ValMet polymorphism on age-associated executive function. Neurobiology of Aging, 2019, 73, 104-114.	3.1	11
21	Both hyper- and hypo-activation to cognitive challenge are associated with increased beta-amyloid deposition in healthy aging: A nonlinear effect. NeuroImage, 2018, 166, 285-292.	4.2	30
22	Arterialâ€spinâ€labeling (ASL) perfusion MRI predicts cognitive function in elderly individuals: A 4â€year longitudinal study. Journal of Magnetic Resonance Imaging, 2018, 48, 449-458.	3.4	67
23	Prevalence of the apolipoprotein E $\hat{l}\mu4$ allele in amyloid \hat{l}^2 positive subjects across the spectrum of Alzheimer's disease. Alzheimer's and Dementia, 2018, 14, 913-924.	0.8	58
24	Age-related changes in cerebrovascular reactivity and their relationship to cognition: A four-year longitudinal study. Neurolmage, 2018, 174, 257-262.	4.2	69
25	APOEε4 Genotype and Hypertension Modify 8-year Cortical Thinning: Five Occasion Evidence from the Seattle Longitudinal Study. Cerebral Cortex, 2018, 28, 1934-1945.	2.9	21
26	Increasing beta-amyloid deposition in cognitively healthy aging predicts nonlinear change in BOLD modulation to difficulty. Neurolmage, 2018, 183, 142-149.	4.2	10
27	Association between subjective memory assessment and associative memory performance: Role of ad risk factors Psychology and Aging, 2018, 33, 109-118.	1.6	20
28	Association of Longitudinal Cognitive Decline With Amyloid Burden in Middle-aged and Older Adults. JAMA Neurology, 2017, 74, 830.	9.0	87
29	Functional magnetic resonance imaging data of incremental increases in visuo-spatial difficulty in an adult lifespan sample. Data in Brief, 2017, 11, 54-60.	1.0	5
30	Age-related reduction of BOLD modulation to cognitive difficulty predicts poorer task accuracy and poorer fluid reasoning ability. Neurolmage, 2017, 147, 262-271.	4.2	62
31	Dynamic range in BOLD modulation: lifespan aging trajectories and association with performance. Neurobiology of Aging, 2017, 60, 153-163.	3.1	49
32	Differential Aging Trajectories of Modulation of Activation to Cognitive Challenge in APOE ε4 Groups: Reduced Modulation Predicts Poorer Cognitive Performance. Journal of Neuroscience, 2017, 37, 6894-6901.	3.6	13
33	A harmonized segmentation protocol for hippocampal and parahippocampal subregions: Why do we need one and what are the key goals?. Hippocampus, 2017, 27, 3-11.	1.9	130
34	Amyloid deposition in younger adults is linked to episodic memory performance. Neurology, 2016, 87, 2562-2566.	1.1	27
35	Discrepancies between fluid and crystallized ability in healthy adults: a behavioral marker of preclinical Alzheimer's disease. Neurobiology of Aging, 2016, 46, 68-75.	3.1	32
36	The effect of betaâ€amyloid on face processing in young and old adults: A multivariate analysis of the BOLD signal. Human Brain Mapping, 2015, 36, 2514-2526.	3.6	25

#	Article	IF	CITATIONS
37	Prevalence of Cerebral Amyloid Pathology in Persons Without Dementia. JAMA - Journal of the American Medical Association, 2015, 313, 1924.	7.4	1,166
38	Prevalence of Amyloid PET Positivity in Dementia Syndromes. JAMA - Journal of the American Medical Association, 2015, 313, 1939.	7.4	501
39	BDNF val66met polymorphism affects aging of multiple types of memory. Brain Research, 2015, 1612, 104-117.	2.2	65
40	Age trajectories of functional activation under conditions of low and high processing demands: An adult lifespan fMRI study of the aging brain. NeuroImage, 2015, 104, 21-34.	4.2	97
41	A comparison of physiologic modulators of fMRI signals. Human Brain Mapping, 2013, 34, 2078-2088.	3.6	56
42	Age-related differences in memory-encoding fMRI responses after accounting for decline in vascular reactivity. Neurolmage, 2013, 78, 415-425.	4.2	92
43	An fMRI study of episodic encoding across the lifespan: Changes in subsequent memory effects are evident by middle-age. Neuropsychologia, 2013, 51, 448-456.	1.6	75
44	Differential brain shrinkage over 6months shows limited association with cognitive practice. Brain and Cognition, 2013, 82, 171-180.	1.8	42
45	Does variability in cognitive performance correlate with frontal brain volume?. NeuroImage, 2013, 64, 209-215.	4.2	53
46	Risk Factors for β-Amyloid Deposition in Healthy Aging. JAMA Neurology, 2013, 70, 600.	9.0	216
47	The Role of Hippocampal Iron Concentration and Hippocampal Volume in Age-Related Differences in Memory. Cerebral Cortex, 2013, 23, 1533-1541.	2.9	83
48	Contribution of Cerebrovascular Health to the Diagnosis of Alzheimer Disease. JAMA Neurology, 2013, 70, 438.	9.0	10
49	β-Amyloid burden in healthy aging. Neurology, 2012, 78, 387-395.	1.1	338
50	Neural Broadening or Neural Attenuation? Investigating Age-Related Dedifferentiation in the Face Network in a Large Lifespan Sample. Journal of Neuroscience, 2012, 32, 2154-2158.	3.6	152
51	White matter deterioration in 15 months: latent growth curve models in healthy adults. Neurobiology of Aging, 2012, 33, 429.e1-429.e5.	3.1	41
52	Effects of beta-amyloid accumulation on neural function during encoding across the adult lifespan. NeuroImage, 2012, 62, 1-8.	4.2	84
53	Differential effects of age and history of hypertension on regional brain volumes and iron. Neurolmage, 2011, 54, 750-759.	4.2	63
54	Effects of age, genes, and pulse pressure on executive functions in healthy adults. Neurobiology of Aging, 2011, 32, 1124-1137.	3.1	42

#	Article	IF	CITATIONS
55	Hippocampal Subfield Volumes: Age, Vascular Risk, and Correlation with Associative Memory. Frontiers in Aging Neuroscience, 2011, 3, 2.	3.4	128
56	Alterations in Cerebral Metabolic Rate and Blood Supply across the Adult Lifespan. Cerebral Cortex, 2011, 21, 1426-1434.	2.9	311
57	The Cognitive Consequences of Structural Changes to the Aging Brain., 2011,, 73-91.		17
58	Adult Age Differences and the Role of Cognitive Resources in Perceptual–Motor Skill Acquisition: Application of a Multilevel Negative Exponential Model. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 2010, 65B, 163-173.	3.9	25
59	Trajectories of brain aging in middle-aged and older adults: Regional and individual differences. Neurolmage, 2010, 51, 501-511.	4.2	504
60	BDNF val66met polymorphism influences age differences in microstructure of the corpus callosum. Frontiers in Human Neuroscience, 2009, $3,19.$	2.0	37
61	Age differences in perseveration: Cognitive and neuroanatomical mediators of performance on the Wisconsin Card Sorting Test. Neuropsychologia, 2009, 47, 1200-1203.	1.6	108
62	Beta-Amyloid Deposition and the Aging Brain. Neuropsychology Review, 2009, 19, 436-450.	4.9	156
63	Synergistic effects of the MTHFR C677T polymorphism and hypertension on spatial navigation. Biological Psychology, 2009, 80, 240-245.	2.2	22
64	Age-related differences in regional brain volumes: A comparison of optimized voxel-based morphometry to manual volumetry. Neurobiology of Aging, 2009, 30, 1657-1676.	3.1	198
65	Genetic and vascular modifiers of age-sensitive cognitive skills: Effects of COMT, BDNF, ApoE, and hypertension Neuropsychology, 2009, 23, 105-116.	1.3	129
66	Neuroanatomical and cognitive mediators of age-related differences in perceptual priming and learning Neuropsychology, 2009, 23, 475-491.	1.3	28
67	Neuroanatomical Correlates of Fluid Intelligence in Healthy Adults and Persons with Vascular Risk Factors. Cerebral Cortex, 2008, 18, 718-726.	2.9	120
68	Neuroanatomical and cognitive mediators of age-related differences in episodic memory Neuropsychology, 2008, 22, 491-507.	1.3	139
69	Brain-Derived Neurotrophic Factor Val66Met and Blood Glucose: A Synergistic Effect on Memory. Frontiers in Human Neuroscience, 2008, 2, 12.	2.0	29
70	Extrahippocampal Contributions to Age Differences in Human Spatial Navigation. Cerebral Cortex, 2007, 17, 1274-1282.	2.9	165
71	Fragmented Pictures Revisited: Long-Term Changes in Repetition Priming, Relation to Skill Learning, and the Role of Cognitive Resources. Gerontology, 2007, 53, 148-158.	2.8	11
72	Vascular health and longitudinal changes in brain and cognition in middle-aged and older adults Neuropsychology, 2007, 21, 149-157.	1.3	225

#	Article	lF	CITATION
73	Brain Aging and Its Modifiers: Insights from in Vivo Neuromorphometry and Susceptibility Weighted Imaging. Annals of the New York Academy of Sciences, 2007, 1097, 84-93.	3.8	149
74	Differential aging of the brain: Patterns, cognitive correlates and modifiers. Neuroscience and Biobehavioral Reviews, 2006, 30, 730-748.	6.1	953
75	Aging and Longitudinal Change in Perceptual-Motor Skill Acquisition in Healthy Adults. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 2005, 60, P174-P181.	3.9	70
76	Regional Brain Changes in Aging Healthy Adults: General Trends, Individual Differences and Modifiers. Cerebral Cortex, 2005, 15, 1676-1689.	2.9	2,331
77	Shrinkage of the Entorhinal Cortex over Five Years Predicts Memory Performance in Healthy Adults. Journal of Neuroscience, 2004, 24, 956-963.	3.6	222
78	Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: replicability of regional differences in volume. Neurobiology of Aging, 2004, 25, 377-396.	3.1	617
79	Hormone replacement therapy and age-related brain shrinkage: regional effects. NeuroReport, 2004, 15, 2531-2534.	1.2	37
80	Differential age-related changes in the regional metencephalic volumes in humans: a 5-year follow-up. Neuroscience Letters, 2003, 349, 163-166.	2.1	43
81	Hypertension and the Brain: Vulnerability of the Prefrontal Regions and Executive Functions Behavioral Neuroscience, 2003, 117, 1169-1180.	1.2	267
82	Differential aging of the human striatum: longitudinal evidence. American Journal of Neuroradiology, 2003, 24, 1849-56.	2.4	202