Karen M Rodrigue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4684871/publications.pdf

Version: 2024-02-01

82 papers 11,637 citations

42 h-index 81 g-index

90 all docs

90 docs citations

times ranked

90

13074 citing authors

#	Article	IF	Citations
1	Regional Brain Changes in Aging Healthy Adults: General Trends, Individual Differences and Modifiers. Cerebral Cortex, 2005, 15, 1676-1689.	1.6	2,331
2	Prevalence of Cerebral Amyloid Pathology in Persons Without Dementia. JAMA - Journal of the American Medical Association, 2015, 313, 1924.	3.8	1,166
3	Differential aging of the brain: Patterns, cognitive correlates and modifiers. Neuroscience and Biobehavioral Reviews, 2006, 30, 730-748.	2.9	953
4	Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: replicability of regional differences in volume. Neurobiology of Aging, 2004, 25, 377-396.	1.5	617
5	Trajectories of brain aging in middle-aged and older adults: Regional and individual differences. Neurolmage, 2010, 51, 501-511.	2.1	504
6	Prevalence of Amyloid PET Positivity in Dementia Syndromes. JAMA - Journal of the American Medical Association, 2015, 313, 1939.	3.8	501
7	\hat{l}^2 -Amyloid burden in healthy aging. Neurology, 2012, 78, 387-395.	1.5	338
8	Alterations in Cerebral Metabolic Rate and Blood Supply across the Adult Lifespan. Cerebral Cortex, 2011, 21, 1426-1434.	1.6	311
9	Hypertension and the Brain: Vulnerability of the Prefrontal Regions and Executive Functions Behavioral Neuroscience, 2003, 117, 1169-1180.	0.6	267
10	Vascular health and longitudinal changes in brain and cognition in middle-aged and older adults Neuropsychology, 2007, 21, 149-157.	1.0	225
11	Shrinkage of the Entorhinal Cortex over Five Years Predicts Memory Performance in Healthy Adults. Journal of Neuroscience, 2004, 24, 956-963.	1.7	222
12	Risk Factors for \hat{I}^2 -Amyloid Deposition in Healthy Aging. JAMA Neurology, 2013, 70, 600.	4.5	216
13	Differential aging of the human striatum: longitudinal evidence. American Journal of Neuroradiology, 2003, 24, 1849-56.	1.2	202
14	Age-related differences in regional brain volumes: A comparison of optimized voxel-based morphometry to manual volumetry. Neurobiology of Aging, 2009, 30, 1657-1676.	1.5	198
15	Extrahippocampal Contributions to Age Differences in Human Spatial Navigation. Cerebral Cortex, 2007, 17, 1274-1282.	1.6	165
16	Beta-Amyloid Deposition and the Aging Brain. Neuropsychology Review, 2009, 19, 436-450.	2.5	156
17	Neural Broadening or Neural Attenuation? Investigating Age-Related Dedifferentiation in the Face Network in a Large Lifespan Sample. Journal of Neuroscience, 2012, 32, 2154-2158.	1.7	152
18	Brain Aging and Its Modifiers: Insights from in Vivo Neuromorphometry and Susceptibility Weighted Imaging. Annals of the New York Academy of Sciences, 2007, 1097, 84-93.	1.8	149

#	Article	IF	CITATIONS
19	Neuroanatomical and cognitive mediators of age-related differences in episodic memory Neuropsychology, 2008, 22, 491-507.	1.0	139
20	A harmonized segmentation protocol for hippocampal and parahippocampal subregions: Why do we need one and what are the key goals?. Hippocampus, 2017, 27, 3-11.	0.9	130
21	Genetic and vascular modifiers of age-sensitive cognitive skills: Effects of COMT, BDNF, ApoE, and hypertension Neuropsychology, 2009, 23, 105-116.	1.0	129
22	Hippocampal Subfield Volumes: Age, Vascular Risk, and Correlation with Associative Memory. Frontiers in Aging Neuroscience, 2011, 3, 2.	1.7	128
23	Neuroanatomical Correlates of Fluid Intelligence in Healthy Adults and Persons with Vascular Risk Factors. Cerebral Cortex, 2008, 18, 718-726.	1.6	120
24	Age differences in perseveration: Cognitive and neuroanatomical mediators of performance on the Wisconsin Card Sorting Test. Neuropsychologia, 2009, 47, 1200-1203.	0.7	108
25	Age trajectories of functional activation under conditions of low and high processing demands: An adult lifespan fMRI study of the aging brain. NeuroImage, 2015, 104, 21-34.	2.1	97
26	Prevalence Estimates of Amyloid Abnormality Across the Alzheimer Disease Clinical Spectrum. JAMA Neurology, 2022, 79, 228.	4.5	97
27	Influence of sample size and analytic approach on stability and interpretation of brainâ€behavior correlations in taskâ€related <scp>fMRI</scp> data. Human Brain Mapping, 2021, 42, 204-219.	1.9	93
28	Age-related differences in memory-encoding fMRI responses after accounting for decline in vascular reactivity. Neurolmage, 2013, 78, 415-425.	2.1	92
29	Association of Longitudinal Cognitive Decline With Amyloid Burden in Middle-aged and Older Adults. JAMA Neurology, 2017, 74, 830.	4.5	87
30	Effects of beta-amyloid accumulation on neural function during encoding across the adult lifespan. NeuroImage, 2012, 62, 1-8.	2.1	84
31	The Role of Hippocampal Iron Concentration and Hippocampal Volume in Age-Related Differences in Memory. Cerebral Cortex, 2013, 23, 1533-1541.	1.6	83
32	An fMRI study of episodic encoding across the lifespan: Changes in subsequent memory effects are evident by middle-age. Neuropsychologia, 2013, 51, 448-456.	0.7	75
33	Aging and Longitudinal Change in Perceptual-Motor Skill Acquisition in Healthy Adults. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 2005, 60, P174-P181.	2.4	70
34	Age-related changes in cerebrovascular reactivity and their relationship to cognition: A four-year longitudinal study. Neurolmage, 2018, 174, 257-262.	2.1	69
35	Arterialâ€spin″abeling (ASL) perfusion MRI predicts cognitive function in elderly individuals: A 4â€year longitudinal study. Journal of Magnetic Resonance Imaging, 2018, 48, 449-458.	1.9	67
36	BDNF val66met polymorphism affects aging of multiple types of memory. Brain Research, 2015, 1612, 104-117.	1.1	65

3

#	Article	IF	CITATIONS
37	Differential effects of age and history of hypertension on regional brain volumes and iron. Neurolmage, 2011, 54, 750-759.	2.1	63
38	Age-related reduction of BOLD modulation to cognitive difficulty predicts poorer task accuracy and poorer fluid reasoning ability. NeuroImage, 2017, 147, 262-271.	2.1	62
39	Prevalence of the apolipoprotein E $\hat{l}\mu$ 4 allele in amyloid \hat{l}^2 positive subjects across the spectrum of Alzheimer's disease. Alzheimer's and Dementia, 2018, 14, 913-924.	0.4	58
40	A comparison of physiologic modulators of fMRI signals. Human Brain Mapping, 2013, 34, 2078-2088.	1.9	56
41	Does variability in cognitive performance correlate with frontal brain volume?. Neurolmage, 2013, 64, 209-215.	2.1	53
42	Dynamic range in BOLD modulation: lifespan aging trajectories and association with performance. Neurobiology of Aging, 2017, 60, 153-163.	1.5	49
43	Differential age-related changes in the regional metencephalic volumes in humans: a 5-year follow-up. Neuroscience Letters, 2003, 349, 163-166.	1.0	43
44	Effects of age, genes, and pulse pressure on executive functions in healthy adults. Neurobiology of Aging, 2011, 32, 1124-1137.	1.5	42
45	Differential brain shrinkage over 6months shows limited association with cognitive practice. Brain and Cognition, 2013, 82, 171-180.	0.8	42
46	White matter deterioration in 15 months: latent growth curve models in healthy adults. Neurobiology of Aging, 2012, 33, 429.e1-429.e5.	1.5	41
47	Hormone replacement therapy and age-related brain shrinkage: regional effects. NeuroReport, 2004, 15, 2531-2534.	0.6	37
48	BDNF val66met polymorphism influences age differences in microstructure of the corpus callosum. Frontiers in Human Neuroscience, 2009, 3, 19.	1.0	37
49	Joint contributions of cortical morphometry and white matter microstructure in healthy brain aging: A partial least squares correlation analysis. Human Brain Mapping, 2019, 40, 5315-5329.	1.9	35
50	Progress update from the hippocampal subfields group. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11, 439-449.	1.2	34
51	ASLâ€MRICloud: An online tool for the processing of ASL MRI data. NMR in Biomedicine, 2019, 32, e4051.	1.6	33
52	Discrepancies between fluid and crystallized ability in healthy adults: a behavioral marker of preclinical Alzheimer's disease. Neurobiology of Aging, 2016, 46, 68-75.	1.5	32
53	Both hyper- and hypo-activation to cognitive challenge are associated with increased beta-amyloid deposition in healthy aging: A nonlinear effect. NeuroImage, 2018, 166, 285-292.	2.1	30
54	The role of hippocampal subfield volume and fornix microstructure in episodic memory across the lifespan. Hippocampus, 2019, 29, 1206-1223.	0.9	30

#	Article	IF	Citations
55	Brain-Derived Neurotrophic Factor Val66Met and Blood Glucose: A Synergistic Effect on Memory. Frontiers in Human Neuroscience, 2008, 2, 12.	1.0	29
56	Neuroanatomical and cognitive mediators of age-related differences in perceptual priming and learning Neuropsychology, 2009, 23, 475-491.	1.0	28
57	Amyloid deposition in younger adults is linked to episodic memory performance. Neurology, 2016, 87, 2562-2566.	1.5	27
58	Adult Age Differences and the Role of Cognitive Resources in Perceptual–Motor Skill Acquisition: Application of a Multilevel Negative Exponential Model. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 2010, 65B, 163-173.	2.4	25
59	The effect of betaâ€amyloid on face processing in young and old adults: A multivariate analysis of the BOLD signal. Human Brain Mapping, 2015, 36, 2514-2526.	1.9	25
60	The association between BOLD-based cerebrovascular reactivity (CVR) and end-tidal CO2 in healthy subjects. NeuroImage, 2020, 207, 116365.	2.1	23
61	Striatal iron content is linked to reduced fronto-striatal brain function under working memory load. Neurolmage, 2020, 210, 116544.	2.1	23
62	Greater BOLD Variability is Associated With Poorer Cognitive Function in an Adult Lifespan Sample. Cerebral Cortex, 2021, 31, 562-574.	1.6	23
63	Synergistic effects of the MTHFR C677T polymorphism and hypertension on spatial navigation. Biological Psychology, 2009, 80, 240-245.	1.1	22
64	APOEε4 Genotype and Hypertension Modify 8-year Cortical Thinning: Five Occasion Evidence from the Seattle Longitudinal Study. Cerebral Cortex, 2018, 28, 1934-1945.	1.6	21
65	Contributions of White Matter Connectivity and BOLD Modulation to Cognitive Aging: A Lifespan Structure-Function Association Study. Cerebral Cortex, 2020, 30, 1649-1661.	1.6	20
66	Association between subjective memory assessment and associative memory performance: Role of ad risk factors Psychology and Aging, 2018, 33, 109-118.	1.4	20
67	The Cognitive Consequences of Structural Changes to the Aging Brain. , 2011, , 73-91.		17
68	Genetic predisposition for inflammation exacerbates effects of striatal iron content on cognitive switching ability in healthy aging. Neurolmage, 2019, 185, 471-478.	2.1	14
69	Aerobic exercise training and neurocognitive function in cognitively normal older adults: A oneâ€ y ear randomized controlled trial. Journal of Internal Medicine, 2022, 292, 788-803.	2.7	14
70	Differential Aging Trajectories of Modulation of Activation to Cognitive Challenge in APOE ε4 Groups: Reduced Modulation Predicts Poorer Cognitive Performance. Journal of Neuroscience, 2017, 37, 6894-6901.	1.7	13
71	Beta-amyloid burden predicts poorer mnemonic discrimination in cognitively normal older adults. Neurolmage, 2020, 221, 117199.	2.1	13
72	Fragmented Pictures Revisited: Long-Term Changes in Repetition Priming, Relation to Skill Learning, and the Role of Cognitive Resources. Gerontology, 2007, 53, 148-158.	1.4	11

#	Article	IF	CITATIONS
73	Frontoparietal cortical thickness mediates the effect of COMT ValMet polymorphism on age-associated executive function. Neurobiology of Aging, 2019, 73, 104-114.	1.5	11
74	Contribution of iron and $\hat{Al^2}$ to age differences in entorhinal and hippocampal subfield volume. Neurology, 2020, 95, e2586-e2594.	1.5	11
75	The effect of vascular health factors on white matter microstructure mediates age-related differences in executive function performance. Cortex, 2021, 141, 403-420.	1.1	11
76	Contribution of Cerebrovascular Health to the Diagnosis of Alzheimer Disease. JAMA Neurology, 2013, 70, 438.	4.5	10
77	Increasing beta-amyloid deposition in cognitively healthy aging predicts nonlinear change in BOLD modulation to difficulty. Neurolmage, 2018, 183, 142-149.	2.1	10
78	Functional Connectivity Within and Between $\langle i \rangle n \langle i \rangle$ -Back Modulated Regions: An Adult Lifespan Psychophysiological Interaction Investigation. Brain Connectivity, 2021, 11, 103-118.	0.8	8
79	White Matter Microstructure Predicts Focal and Broad Functional Brain Dedifferentiation in Normal Aging. Journal of Cognitive Neuroscience, 2020, 32, 1536-1549.	1.1	7
80	Frontostriatal white matter connectivity: age differences and associations with cognition and BOLD modulation. Neurobiology of Aging, 2020, 94, 154-163.	1.5	7
81	Functional magnetic resonance imaging data of incremental increases in visuo-spatial difficulty in an adult lifespan sample. Data in Brief, 2017 , 11 , 54 - 60 .	0.5	5
82	Cortical thickness mediates the relationship between DRD2 C957T polymorphism and executive function across the adult lifespan. Brain Structure and Function, 2021, 226, 121-136.	1.2	3