
Nephi Stella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4684418/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ABHD6 Controls Amphetamine-Stimulated Hyperlocomotion: Involvement of CB ₁ Receptors. Cannabis and Cannabinoid Research, 2022, 7, 188-198.	2.9	6
2	Control of exploration, motor coordination and amphetamine sensitization by cannabinoid CB ₁ receptors expressed in medium spiny neurons. European Journal of Neuroscience, 2021, 54, 4934-4952.	2.6	5
3	A brain-penetrant microtubule-targeting agent that disrupts hallmarks of glioma tumorigenesis. Neuro-Oncology Advances, 2021, 3, vdaa165.	0.7	10
4	Benzisothiazolinone Derivatives as Potent Allosteric Monoacylglycerol Lipase Inhibitors That Functionally Mimic Sulfenylation of Regulatory Cysteines. Journal of Medicinal Chemistry, 2020, 63, 1261-1280.	6.4	9
5	Sex-dependent impaired locomotion and motor coordination in the HdhQ200/200 mouse model of Huntington's Disease. Neurobiology of Disease, 2019, 132, 104607.	4.4	7
6	GPR124 regulates microtubule assembly, mitotic progression, and glioblastoma cell proliferation. Glia, 2019, 67, 1558-1570.	4.9	15
7	Voluntary oral consumption of Δ9-tetrahydrocannabinol by adolescent rats impairs reward-predictive cue behaviors in adulthood. Neuropsychopharmacology, 2019, 44, 1406-1414.	5.4	46
8	ABHD6: Its Place in Endocannabinoid Signaling and Beyond. Trends in Pharmacological Sciences, 2019, 40, 267-277.	8.7	39
9	Identification of α,β-Hydrolase Domain Containing Protein 6 as a Diacylglycerol Lipase in Neuro-2a Cells. Frontiers in Molecular Neuroscience, 2019, 12, 286.	2.9	19
10	Sex-dependent behavioral impairments in the HdhQ350/+ mouse line. Behavioural Brain Research, 2018, 337, 34-45.	2.2	10
11	Cannabis use during pregnancy: Pharmacokinetics and effects on child development. , 2018, 182, 133-151.		180
12	Unintended specificity of an engineered ligand-binding protein facilitated by unpredicted plasticity of the protein fold. Protein Engineering, Design and Selection, 2018, 31, 375-387.	2.1	6
13	Modified carbazoles destabilize microtubules and kill glioblastoma multiform cells. European Journal of Medicinal Chemistry, 2018, 159, 74-89.	5.5	19
14	The cannabinoid-1 receptor is abundantly expressed in striatal striosomes and striosome-dendron bouquets of the substantia nigra. PLoS ONE, 2018, 13, e0191436.	2.5	62
15	Label-Free Dynamic Mass Redistribution Reveals Low-Density, Prosurvival <i>α</i> _{1B} -Adrenergic Receptors in Human SW480 Colon Carcinoma Cells. Journal of Pharmacology and Experimental Therapeutics, 2017, 361, 219-228.	2.5	4
16	Cannabidiol attenuates seizures and social deficits in a mouse model of Dravet syndrome. Proceedings of the United States of America, 2017, 114, 11229-11234.	7.1	283
17	Quantitative Analyses of Synergistic Responses between Cannabidiol and DNA-Damaging Agents on the Proliferation and Viability of Glioblastoma and Neural Progenitor Cells in Culture. Journal of Pharmacology and Experimental Therapeutics, 2017, 360, 215-224.	2.5	42
18	Novel indole-based compounds that differentiate alkylindole-sensitive receptors from cannabinoid receptors and microtubules: Characterization of their activity on glioma cell migration. Pharmacological Research, 2017, 115, 233-241.	7.1	13

#	Article	IF	CITATIONS
19	ST-11: A New Brain-Penetrant Microtubule-Destabilizing Agent with Therapeutic Potential for Glioblastoma Multiforme. Molecular Cancer Therapeutics, 2016, 15, 2018-2029.	4.1	22
20	Dynamic mass redistribution reveals diverging importance of PDZ-ligands for G protein-coupled receptor pharmacodynamics. Pharmacological Research, 2016, 105, 13-21.	7.1	7
21	Muscarinic M 1 receptor and cannabinoid CB 1 receptor do not modulate paraoxonâ€induced seizures. Pharmacology Research and Perspectives, 2015, 3, e00100.	2.4	9
22	Alkylindole-sensitive receptors modulate microglial cell migration and proliferation. Glia, 2015, 63, 1797-1808.	4.9	14
23	A novel near-infrared fluorescence imaging probe that preferentially binds to cannabinoid receptors CB2R over CB1R. Biomaterials, 2015, 57, 169-178.	11.4	27
24	Endocannabinoid signalling and the deteriorating brain. Nature Reviews Neuroscience, 2015, 16, 30-42.	10.2	312
25	Targeting endocannabinoid signaling in tumorâ€associated macrophages as treatment for glioblastoma multiforme. Environmental Sciences Europe, 2014, 3, 39-51.	5.5	3
26	Potential upstream regulators of cannabinoid receptor 1 signaling in prostate cancer: A Bayesian network analysis of data from a tissue microarray. Prostate, 2014, 74, 1107-1117.	2.3	8
27	Cannabis use by individuals with multiple sclerosis: effects on specific immune parameters. Inflammopharmacology, 2014, 22, 295-303.	3.9	25
28	G protein-coupled receptors as oncogenic signals in glioma: Emerging therapeutic avenues. Neuroscience, 2014, 278, 222-236.	2.3	34
29	Genetic rescue of CB1 receptors on medium spiny neurons prevents loss of excitatory striatal synapses but not motor impairment in HD mice. Neurobiology of Disease, 2014, 71, 140-150.	4.4	46
30	ABHD6 Blockade Exerts Antiepileptic Activity in PTZ-Induced Seizures and in Spontaneous Seizures in R6/2 Mice. Neuron, 2014, 83, 361-371.	8.1	103
31	Modulation of Pilocarpine-Induced Seizures by Cannabinoid Receptor 1. PLoS ONE, 2014, 9, e95922.	2.5	39
32	Downregulation of cannabinoid receptor 1 from neuropeptide <scp>Y</scp> interneurons in the basal ganglia of patients with Huntington's disease and mouse models. European Journal of Neuroscience, 2013, 37, 429-440.	2.6	46
33	Differential migratory properties of monocytes isolated from human subjects naÃ ⁻ ve and non-naÃ ⁻ ve to Cannabis. Inflammopharmacology, 2013, 21, 253-259.	3.9	15
34	Two Novel Mutations in <i>ABHD12</i> : Expansion of the Mutation Spectrum in PHARC and Assessment of Their Functional Effects. Human Mutation, 2013, 34, 1672-1678.	2.5	39
35	Chronic THC intake modifies fundamental cerebellar functions. Journal of Clinical Investigation, 2013, 123, 3208-3210.	8.2	11
36	GPR124 coupling and function in astrocytomas. FASEB Journal, 2013, 27, 1096.4.	0.5	0

#	Article	IF	CITATIONS
37	Cannabinoid Receptor 2 Signaling in Peripheral Immune Cells Modulates Disease Onset and Severity in Mouse Models of Huntington's Disease. Journal of Neuroscience, 2012, 32, 18259-18268.	3.6	115
38	Inflammation to Rebuild a Brain. Science, 2012, 338, 1303-1304.	12.6	11
39	Gravin Is a Transitory Effector of Polo-like Kinase 1 during Cell Division. Molecular Cell, 2012, 48, 547-559.	9.7	36
40	Mutant huntingtin impairs immune cell migration in Huntington disease. Journal of Clinical Investigation, 2012, 122, 4737-4747.	8.2	132
41	Anatomy of Prostaglandin Signals. Science, 2011, 334, 768-769.	12.6	6
42	NIR-mbc94, a Fluorescent Ligand that Binds to Endogenous CB2 Receptors and Is Amenable to High-Throughput Screening. Chemistry and Biology, 2011, 18, 563-568.	6.0	36
43	Dual Inhibition of α/β-Hydrolase Domain 6 and Fatty Acid Amide Hydrolase Increases Endocannabinoid Levels in Neurons. Journal of Biological Chemistry, 2011, 286, 28723-28728.	3.4	39
44	Cannabinoid and cannabinoidâ€like receptors in microglia, astrocytes, and astrocytomas. Glia, 2010, 58, 1017-1030.	4.9	442
45	Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals. Nature Methods, 2010, 7, 126-129.	19.0	316
46	The serine hydrolase ABHD6 controls the accumulation and efficacy of 2-AG at cannabinoid receptors. Nature Neuroscience, 2010, 13, 951-957.	14.8	395
47	Endocannabinoid Signaling Mediates Psychomotor Activation by Adenosine A _{2A} Antagonists. Journal of Neuroscience, 2010, 30, 2160-2164.	3.6	74
48	The Expression Level of CB1 and CB2 Receptors Determines Their Efficacy at Inducing Apoptosis in Astrocytomas. PLoS ONE, 2010, 5, e8702.	2.5	75
49	Genetic Manipulation of Palmitoylethanolamide Production and Inactivation in Saccharomyces cerevisiae. PLoS ONE, 2009, 4, e5942.	2.5	11
50	Differential changes in GPR55 during microglial cell activation. FEBS Letters, 2009, 583, 2071-2076.	2.8	103
51	Microglial cell migration stimulated by ATP and C5a involve distinct molecular mechanisms: Quantification of migration by a novel nearâ€infrared method. Glia, 2009, 57, 875-883.	4.9	52
52	Synthesis and characterization of a peripherally restricted CB1 cannabinoid antagonist, URB447, that reduces feeding and body-weight gain in mice. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 639-643.	2.2	114
53	Measuring Endocannabinoid Hydrolysis: Refining our Tools and Understanding. AAPS Journal, 2009, 11, 307-311.	4.4	7
54	Endocannabinoid signaling in microglial cells. Neuropharmacology, 2009, 56, 244-253.	4.1	236

#	Article	IF	CITATIONS
55	Binding of NIR-conPK and NIR-6T to Astrocytomas and Microglial Cells: Evidence for a Protein Related to TSPO. PLoS ONE, 2009, 4, e8271.	2.5	9
56	An optimized GC–MS method detects nanomolar amounts of anandamide in mouse brain. Analytical Biochemistry, 2008, 373, 220-228.	2.4	46
57	Microglia produce and hydrolyze palmitoylethanolamide. Neuropharmacology, 2008, 54, 16-22.	4.1	84
58	MBC94, a Conjugable Ligand for Cannabinoid CB ₂ Receptor Imaging. Bioconjugate Chemistry, 2008, 19, 988-992.	3.6	42
59	Identification of a Novel Endocannabinoid-Hydrolyzing Enzyme Expressed by Microglial Cells. Journal of Neuroscience, 2007, 27, 2883-2889.	3.6	162
60	2-AG + 2 New Players = Forecast for Therapeutic Advances. Chemistry and Biology, 2007, 14, 1309-1311.	6.0	8
61	Targeting Astrocytomas and Invading Immune Cells with Cannabinoids: A Promising Therapeutic Avenue. Molecular Neurobiology, 2007, 36, 36-44.	4.0	5
62	A Peripheral Benzodiazepine Receptor Targeted Agent for In Vitro Imaging and Screening. Bioconjugate Chemistry, 2006, 17, 735-740.	3.6	36
63	Cannabinoid receptors and endocannabinoids: Evidence for new players. AAPS Journal, 2006, 8, E298-E306.	4.4	208
64	The Endocannabinoid System Promotes Astroglial Differentiation by Acting on Neural Progenitor Cells. Journal of Neuroscience, 2006, 26, 1551-1561.	3.6	225
65	Experimental autoimmune encephalomyelitis disrupts endocannabinoid-mediated neuroprotection. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6362-6367.	7.1	121
66	Cannabinoid Receptors and Endocannabinoids: Evidence for New Players. AAPS Journal, 2006, 08, E298.	4.4	127
67	Cannabis Sativa: Getting closer to separating the medicinal properties from the drug of abuse. Journal of Neuroimmunology, 2005, 166, 1-2.	2.3	2
68	Identification and Functional Characterization of Brainstem Cannabinoid CB ₂ Receptors. Science, 2005, 310, 329-332.	12.6	1,357
69	Cannabinol delays symptom onset in SOD1 (G93A) transgenic mice without affecting survival. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2005, 6, 182-184.	2.1	86
70	The endocannabinoid system drives neural progenitor proliferation. FASEB Journal, 2005, 19, 1704-1706.	0.5	291
71	Cannabinoid Signaling in Glial Cells in Health and Disease. Current Neuropharmacology, 2004, 2, 115-124.	2.9	6
72	ATP Induces a Rapid and Pronounced Increase in 2-Arachidonoylglycerol Production by Astrocytes, a Response Limited by Monoacylglycerol Lipase. Journal of Neuroscience, 2004, 24, 8068-8074.	3.6	108

#	Article	IF	CITATIONS
73	P2X ₇ receptors control 2-arachidonoylglycerol production by microglial cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3214-3219.	7.1	174
74	Endocannabinoids accumulate in spinal cord of SOD1 G93A transgenic mice. Journal of Neurochemistry, 2004, 89, 1555-1557.	3.9	93
75	Cannabinoids and neuroinflammation. British Journal of Pharmacology, 2004, 141, 775-785.	5.4	281
76	Cannabinoid signaling in glial cells. Glia, 2004, 48, 267-277.	4.9	207
77	Arachidonylcyclopropylamide increases microglial cell migration through cannabinoid CB2 and abnormal-cannabidiol-sensitive receptors. European Journal of Pharmacology, 2003, 474, 195-198.	3.5	95
78	Endothelin-1 increases 2-arachidonoyl glycerol (2-AG) production in astrocytes. Glia, 2003, 44, 85-90.	4.9	79
79	Nonpsychotropic Cannabinoid Receptors Regulate Microglial Cell Migration. Journal of Neuroscience, 2003, 23, 1398-1405.	3.6	605
80	Palmitoylethanolamide Increases after Focal Cerebral Ischemia and Potentiates Microglial Cell Motility. Journal of Neuroscience, 2003, 23, 7767-7775.	3.6	232
81	Astrocytes in Culture Produce Anandamide and Other Acylethanolamides. Journal of Biological Chemistry, 2002, 277, 20869-20876.	3.4	162
82	Receptor-dependent formation of endogenous cannabinoids in cortical neurons. European Journal of Pharmacology, 2001, 425, 189-196.	3.5	204
83	Endogenous Cannabinoid Signaling. Neurobiology of Disease, 1998, 5, 462-473.	4.4	155
84	Evidence Supporting the Existence of an Activity-Dependent Astrocyte-Neuron Lactate Shuttle. Developmental Neuroscience, 1998, 20, 291-299.	2.0	610
85	Mechanism Involved in Initiation and Propagation of Receptor-Induced Intercellular Calcium Signaling in Cultured Rat Astrocytes. Journal of Neuroscience, 1997, 17, 1981-1992.	3.6	229
86	Interleukin-1 Enhances the ATP-Evoked Release of Arachidonic Acid from Mouse Astrocytes. Journal of Neuroscience, 1997, 17, 2939-2946.	3.6	84
87	A second endogenous cannabinoid that modulates long-term potentiation. Nature, 1997, 388, 773-778.	27.8	1,374
88	Vasoactive Intestinal Peptide (VIP) and Pituitary Adenylate Cyclase-activating Polypeptide (PACAP) Potentiate the Glutamate-evoked Release of Arachidonic Acid from Mouse Cortical Neurons. Journal of Biological Chemistry, 1996, 271, 23705-23710.	3.4	28