List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4682788/publications.pdf Version: 2024-02-01

		22153	30922
155	11,420	59	102
papers	citations	h-index	g-index
1=0	1=0	1=0	
172	172	172	14745
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	2D/2D Heterostructures: Rational Design for Advanced Batteries and Electrocatalysis. Energy and Environmental Materials, 2022, 5, 115-132.	12.8	70
2	A reactive copper-organophosphate-MXene heterostructure enabled antibacterial, self-extinguishing and mechanically robust polymer nanocomposites. Chemical Engineering Journal, 2022, 430, 132712.	12.7	64
3	Phase engineering of dual active 2D Bi ₂ O ₃ -based nanocatalysts for alkaline hydrogen evolution reaction electrocatalysis. Journal of Materials Chemistry A, 2022, 10, 808-817.	10.3	10
4	Molybdenumâ€Promoted Surface Reconstruction in Polymorphic Cobalt for Initiating Rapid Oxygen Evolution. Advanced Energy Materials, 2022, 12, 2103247.	19.5	59
5	Phase engineering activation of low-cost iron-containing sulfide minerals for advanced electrocatalysis. Journal of Materials Science and Technology, 2022, 111, 181-188.	10.7	12
6	Molybdenumâ€Promoted Surface Reconstruction in Polymorphic Cobalt for Initiating Rapid Oxygen Evolution (Adv. Energy Mater. 5/2022). Advanced Energy Materials, 2022, 12, .	19.5	1
7	Frontispiece: Crystal Channel Engineering for Rapid Ion Transport: From Nature to Batteries. Chemistry - A European Journal, 2022, 28, .	3.3	0
8	Modulating the Electronic Structure of FeCo Nanoparticles in Nâ€Doped Mesoporous Carbon for Efficient Oxygen Reduction Reaction. Advanced Science, 2022, 9, e2200394.	11.2	52
9	Conversion of Catalytically Inert 2D Bismuth Oxide Nanosheets for Effective Electrochemical Hydrogen Evolution Reaction Catalysis via Oxygen Vacancy Concentration Modulation. Nano-Micro Letters, 2022, 14, 90.	27.0	51
10	Crystal Channel Engineering for Rapid Ion Transport: From Nature to Batteries. Chemistry - A European Journal, 2022, 28, .	3.3	6
11	Bioinspired Materials for Energy Storage. Small Methods, 2022, 6, e2101076.	8.6	25
12	Bioinspired Robust Mechanical Properties for Advanced Materials. Small Structures, 2022, 3, .	12.0	17
13	Portable Dualâ€Modular Immunosensor Constructed from Bimetallic Metal–Organic Framework Heterostructure Grafted with Enzymeâ€Mimicking Label for Rosiglitazone Detection. Advanced Functional Materials, 2022, 32, .	14.9	30
14	2D/2D Black Phosphorus/Nickel Hydroxide Heterostructures for Promoting Oxygen Evolution via Electronic Structure Modulation and Surface Reconstruction. Advanced Energy Materials, 2022, 12, .	19.5	37
15	MAXâ€phase Derived Tin Diselenide for 2D/2D Heterostructures with Ultralow Surface/Interface Transport Barriers toward Liâ€ / Naâ€ i ons Storage. Small Methods, 2022, 6, .	8.6	5
16	Electronic Structure Tuning of 2D Metal (Hydr)oxides Nanosheets for Electrocatalysis. Small, 2021, 17, e2002240.	10.0	90
17	Heteroatomâ€Doping of Nonâ€Noble Metalâ€Based Catalysts for Electrocatalytic Hydrogen Evolution: An Electronic Structure Tuning Strategy. Small Methods, 2021, 5, e2000988.	8.6	165
18	In Search of Excellence: Convex versus Concave Noble Metal Nanostructures for Electrocatalytic Applications. Advanced Materials, 2021, 33, e2004554.	21.0	34

#	Article	IF	CITATIONS
19	Strongly Coupled 2D Transition Metal Chalcogenide-MXene-Carbonaceous Nanoribbon Heterostructures with Ultrafast Ion Transport for Boosting Sodium/Potassium Ions Storage. Nano-Micro Letters, 2021, 13, 113.	27.0	100
20	Oriented assembly of monomicelles in beam stream enabling bimodal mesoporous metal oxide nanofibers. Science China Materials, 2021, 64, 2486-2496.	6.3	6
21	Bambooâ€Membrane Inspired Multilevel Ultrafast Interlayer Ion Transport for Superior Volumetric Energy Storage. Advanced Functional Materials, 2021, 31, 2100299.	14.9	27
22	In Situ Growth of Transition Metal Nanoparticles on Aluminosilicate Minerals for Oxygen Evolution. Advanced Energy and Sustainability Research, 2021, 2, 2100057.	5.8	3
23	Exceptional Deformability of Wurtzite Zinc Oxide Nanowires with Growth Axial Stacking Faults. Nano Letters, 2021, 21, 4327-4334.	9.1	3
24	Nanomaterials and Composites for Energy Conversion and Storage. Jom, 2021, 73, 2752-2753.	1.9	3
25	Three-Dimensional Fast Na-Ion Transport in Sodium Titanate Nanoarchitectures via Engineering of Oxygen Vacancies and Bismuth Substitution. ACS Nano, 2021, 15, 13604-13615.	14.6	36
26	2D ferroelectric devices: working principles and research progress. Physical Chemistry Chemical Physics, 2021, 23, 21376-21384.	2.8	25
27	Fe-doping induced localized amorphization in ultrathin α-Ni(OH) ₂ nanomesh for superior oxygen evolution reaction catalysis. Journal of Materials Chemistry A, 2021, 9, 14372-14380.	10.3	44
28	Microbe-Assisted Assembly of Ti ₃ C ₂ T _{<i>x</i>} MXene on Fungi-Derived Nanoribbon Heterostructures for Ultrastable Sodium and Potassium Ion Storage. ACS Nano, 2021, 15, 3423-3433.	14.6	158
29	Nano Polymorphismâ€Enabled Redox Electrodes for Rechargeable Batteries. Advanced Materials, 2021, 33, e2004920.	21.0	23
30	Surfaceâ€Dependent Intermediate Adsorption Modulation on Iridiumâ€Modified Black Phosphorus Electrocatalysts for Efficient pHâ€Universal Water Splitting. Advanced Materials, 2021, 33, e2104638.	21.0	65
31	Bioinspired 2D Nanomaterials for Sustainable Applications. Advanced Materials, 2020, 32, e1902806.	21.0	84
32	Low-Cost Ni ₂ P/Ni _{0.96} S Heterostructured Bifunctional Electrocatalyst toward Highly Efficient Overall Urea-Water Electrolysis. ACS Applied Materials & Interfaces, 2020, 12, 2225-2233.	8.0	93
33	Toward Promising Cathode Catalysts for Nonlithium Metal–Oxygen Batteries. Advanced Energy Materials, 2020, 10, 1901997.	19.5	102
34	Future antiviral surfaces: Lessons from COVID-19 pandemic. Sustainable Materials and Technologies, 2020, 25, e00203.	3.3	63
35	Confined interfacial micelle aggregating assembly of ordered macro–mesoporous tungsten oxides for H ₂ S sensing. Nanoscale, 2020, 12, 20811-20819.	5.6	15

36 Bioinspired 2D Nanomaterials: Bioinspired 2D Nanomaterials for Sustainable Applications (Adv. Mater.) Tj ETQq0 0 0 rgBT /Overlock 10

#	Article	IF	CITATIONS
37	First Exploration on Electrochemical Activation of Lowâ€Cost Albite Mineral for Boosting Lithium Storage Capability. Advanced Sustainable Systems, 2020, 4, 2000057.	5.3	8
38	Metalâ€Nitrogenâ€Doped Carbon Materials as Highly Efficient Catalysts: Progress and Rational Design. Advanced Science, 2020, 7, 2001069.	11.2	228
39	Effect of Fe-doping on bending elastic properties of single-crystalline rutile TiO2 nanowires. Nanoscale Advances, 2020, 2, 2800-2807.	4.6	1
40	Two-dimensional metal oxide nanomaterials for sustainable energy applications. , 2020, , 39-72.		3
41	Strongly interfacial-coupled 2D-2D TiO2/g-C3N4 heterostructure for enhanced visible-light induced synthesis and conversion. Journal of Hazardous Materials, 2020, 394, 122529.	12.4	118
42	Donor-acceptor codoping effects on tuned visible light response of TiO2. Journal of Environmental Chemical Engineering, 2020, 8, 104168.	6.7	12
43	Two-dimensional fluorine-free mesoporous Mo2C MXene via UV-induced selective etching of Mo2Ga2C for energy storage. Sustainable Materials and Technologies, 2020, 25, e00156.	3.3	89
44	Thermal reduction of sulfur-containing MAX phase for MXene production. Chemical Engineering Journal, 2020, 395, 125111.	12.7	116
45	Nanoarchitectured Structure and Surface Biofunctionality of Mesoporous Silica Nanoparticles. Advanced Materials, 2020, 32, e1907035.	21.0	336
46	Atomistic Mechanisms of Ultralarge Bending Deformation of Single-Crystalline TiO2–B Nanowires. Journal of Physical Chemistry C, 2020, 124, 11174-11182.	3.1	5
47	Carbon–Phosphorus Bonds-Enriched 3D Graphene by Self-Sacrificing Black Phosphorus Nanosheets for Elevating Capacitive Lithium Storage. ACS Applied Materials & Interfaces, 2020, 12, 21720-21729.	8.0	33
48	Reversible Switching of the Amphiphilicity of Organic–Inorganic Hybrids by Adsorption–Desorption Manipulation. Journal of Physical Chemistry C, 2019, 123, 21097-21102.	3.1	1
49	Two-Dimensional Bismuth Oxide Heterostructured Nanosheets for Lithium- and Sodium-Ion Storages. ACS Applied Materials & Interfaces, 2019, 11, 28205-28212.	8.0	52
50	<i>In Situ</i> Atomic-Scale Study on the Ultralarge Bending Behaviors of TiO ₂ –B/Anatase Dual-Phase Nanowires. Nano Letters, 2019, 19, 7742-7749.	9.1	15
51	Graphene Nanoarchitectonics: Recent Advances in Grapheneâ€Based Electrocatalysts for Hydrogen Evolution Reaction. Advanced Materials, 2019, 31, e1903415.	21.0	289
52	Critical thickness of a surface-functionalized coating for enhanced lithium storage: a case study of nanoscale polypyrrole-coated FeS ₂ as a cathode for Li-ion batteries. Nanoscale, 2019, 11, 16277-16283.	5.6	27
53	In situ interface engineering for probing the limit of quantum dot photovoltaic devices. Nature Nanotechnology, 2019, 14, 950-956.	31.5	30
54	Atomic-scale investigation on the ultra-large bending behaviours of layered sodium titanate nanowires. Nanoscale, 2019, 11, 11847-11855.	5.6	5

#	Article	IF	CITATIONS
55	Beyond Seashells: Bioinspired 2D Photonic and Photoelectronic Devices. Advanced Functional Materials, 2019, 29, 1901460.	14.9	78
56	Black phosphorus nanosheets promoted 2D-TiO2-2D heterostructured anode for high-performance lithium storage. Energy Storage Materials, 2019, 19, 424-431.	18.0	69
57	Cobalt oxide-based nanoarchitectures for electrochemical energy applications. Progress in Materials Science, 2019, 103, 596-677.	32.8	166
58	Honeycombâ€Inspired Heterogeneous Bimetallic Co–Mo Oxide Nanoarchitectures for Highâ€Rate Electrochemical Lithium Storage. Small Methods, 2019, 3, 1900055.	8.6	40
59	Characterization of atomic defects on the photoluminescence in twoâ€dimensional materials using transmission electron microscope. InformaÄnÃ-Materiály, 2019, 1, 85-97.	17.3	46
60	Nonlithium Metal–Sulfur Batteries: Steps Toward a Leap. Advanced Materials, 2019, 31, e1802822.	21.0	168
61	3D sandwiched nanosheet of MoS2/C@RGO achieved by supramolecular self-assembly method as high performance material in supercapacitor. Journal of Alloys and Compounds, 2019, 777, 1176-1183.	5.5	38
62	H ₂ S Sensing and Splitting on Atomâ€Functionalized Carbon Nanotubes: A Theoretical Study. Advanced Theory and Simulations, 2018, 1, 1700033.	2.8	15
63	Advances in In Situ Techniques for Characterization of Failure Mechanisms of Liâ€lon Battery Anodes. Advanced Sustainable Systems, 2018, 2, 1700182.	5.3	20
64	Chitosan-Confined Synthesis of N-Doped and Carbon-Coated Li ₄ Ti ₅ O ₁₂ Nanoparticles with Enhanced Lithium Storage for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A1046-A1053.	2.9	32
65	Manipulating the Architecture of Atomically Thin Transition Metal (Hydr)oxides for Enhanced Oxygen Evolution Catalysis. ACS Nano, 2018, 12, 1878-1886.	14.6	57
66	Simultaneous atomic-level visualization and high precision photocurrent measurements on photoelectric devices by <i>in situ</i> TEM. RSC Advances, 2018, 8, 948-953.	3.6	7
67	Strategies for improving the lithium-storage performance of 2D nanomaterials. National Science Review, 2018, 5, 389-416.	9.5	108
68	Two-dimensional metal oxide nanosheets for rechargeable batteries. Journal of Energy Chemistry, 2018, 27, 117-127.	12.9	105
69	Janus nanoarchitectures: From structural design to catalytic applications. Nano Today, 2018, 22, 62-82.	11.9	137
70	Simplest MOF Units for Effective Photodriven Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2018, 140, 9159-9166.	13.7	59
71	Theoretically designed metal-welded carbon nanotubes: Extraordinary electronic properties and promoted catalytic performance. Nano Energy, 2017, 32, 209-215.	16.0	17
72	Fish Gill Inspired Crossflow for Efficient and Continuous Collection of Spilled Oil. ACS Nano, 2017, 11, 2477-2485.	14.6	186

#	Article	IF	CITATIONS
73	Theoretically Manipulating Quantum Dots on Two-Dimensional TiO ₂ Monolayer for Effective Visible Light Absorption. ACS Applied Materials & Interfaces, 2017, 9, 8255-8262.	8.0	39
74	Single-crystalline ultrathin 2D TiO2 nanosheets: A bridge towards superior photovoltaic devices. Materials Today Energy, 2017, 3, 32-39.	4.7	67
75	Twoâ€Dimensional Metal Oxide Nanomaterials for Nextâ€Generation Rechargeable Batteries. Advanced Materials, 2017, 29, 1700176.	21.0	317
76	Two-Dimensional Topological Insulators: Progress and Prospects. Journal of Physical Chemistry Letters, 2017, 8, 1905-1919.	4.6	170
77	Construction of 2D lateral pseudoheterostructures by strain engineering. 2D Materials, 2017, 4, 025102.	4.4	31
78	Atomically thin Co ₃ O ₄ nanosheet-coated stainless steel mesh with enhanced capacitive Na ⁺ storage for high-performance sodium-ion batteries. 2D Materials, 2017, 4, 015022.	4.4	44
79	Multiangular Rod-Shaped Na _{0.44} MnO ₂ as Cathode Materials with High Rate and Long Life for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 3644-3652.	8.0	107
80	Naphthalene Diimide-Ethylene Conjugated Copolymer as Cathode Material for Lithium Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A290-A294.	2.9	19
81	Strategies for designing metal oxide nanostructures. Science China Materials, 2017, 60, 1-24.	6.3	148
82	Atomically thin non-layered nanomaterials for energy storage and conversion. Chemical Society Reviews, 2017, 46, 7338-7373.	38.1	162
83	2D Metal Oxides: Twoâ€Dimensional Metal Oxide Nanomaterials for Nextâ€Generation Rechargeable Batteries (Adv. Mater. 48/2017). Advanced Materials, 2017, 29, 1770344.	21.0	14
84	Magnetic Characterization of Nanodendritic Platinum. , 2017, , 431-456.		0
85	Carbonâ€Coated Hierarchical SnO ₂ Hollow Spheres for Lithium Ion Batteries. Chemistry - A European Journal, 2016, 22, 5853-5857.	3.3	62
86	Atomic Layerâ€by‣ayer Co ₃ O ₄ /Graphene Composite for High Performance Lithiumâ€ion Batteries. Advanced Energy Materials, 2016, 6, 1501835.	19.5	316
87	Fly compound-eye inspired inorganic nanostructures with extraordinary visible-light responses. Materials Today Chemistry, 2016, 1-2, 84-89.	3.5	22
88	Graphene-like holey Co3O4 nanosheets as a highly efficient catalyst for oxygen evolution reaction. Nano Energy, 2016, 30, 267-275.	16.0	179
89	Deliberate Design of TiO ₂ Nanostructures towards Superior Photovoltaic Cells. Chemistry - A European Journal, 2016, 22, 11357-11364.	3.3	25
90	Auxetic and Ferroelastic Borophane: A Novel 2D Material with Negative Possion's Ratio and Switchable Dirac Transport Channels. Nano Letters, 2016, 16, 7910-7914.	9.1	176

#	Article	IF	CITATIONS
91	High-mobility anisotropic transport in few-layer γ-B ₂₈ films. Nanoscale, 2016, 8, 20111-20117.	5.6	14
92	Bismuth sulfide: A high-capacity anode for sodium-ion batteries. Journal of Power Sources, 2016, 309, 135-140.	7.8	122
93	Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries. Scientific Reports, 2015, 5, 10908.	3.3	165
94	Tetragonal bismuth bilayer: a stable and robust quantum spin hall insulator. 2D Materials, 2015, 2, 045010.	4.4	34
95	Fish-scale bio-inspired multifunctional ZnO nanostructures. NPG Asia Materials, 2015, 7, e232-e232.	7.9	56
96	Performance modulation of α-MnO2 nanowires by crystal facet engineering. Scientific Reports, 2015, 5, 8987.	3.3	88
97	Two-step self-assembly of hierarchically-ordered nanostructures. Journal of Materials Chemistry A, 2015, 3, 11688-11699.	10.3	51
98	Two-Dimensional Tin Disulfide Nanosheets for Enhanced Sodium Storage. ACS Nano, 2015, 9, 11371-11381.	14.6	257
99	3D Fe2(MoO4)3 microspheres with nanosheet constituents as high-capacity anode materials for lithium-ion batteries. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	18
100	Channelled Porous TiO ₂ Synthesized with a Waterâ€inâ€Oil Microemulsion. Chemistry - A European Journal, 2014, 20, 10451-10455.	3.3	6
101	Surface Chemistry: Bio-Inspired Multifunctional Metallic Foams Through the Fusion of Different Biological Solutions (Adv. Funct. Mater. 18/2014). Advanced Functional Materials, 2014, 24, 2720-2720.	14.9	0
102	Zr ⁴⁺ Doping in Li ₄ Ti ₅ O ₁₂ Anode for Lithiumâ€lon Batteries: Open Li ⁺ Diffusion Paths through Structural Imperfection. ChemSusChem, 2014, 7, 1451-1457.	6.8	92
103	Bioâ€Inspired Multifunctional Metallic Foams Through the Fusion of Different Biological Solutions. Advanced Functional Materials, 2014, 24, 2721-2726.	14.9	46
104	Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons. Journal of Materials Chemistry A, 2014, 2, 19848-19854.	10.3	419
105	Flyâ€Eye Inspired Superhydrophobic Antiâ€Fogging Inorganic Nanostructures. Small, 2014, 10, 3001-3006.	10.0	290
106	A germanium/single-walled carbon nanotube composite paper as a free-standing anode for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 4613.	10.3	37
107	Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nature Communications, 2014, 5, 3813.	12.8	741
108	Synthesis of Mesoporous TiO ₂ /SiO ₂ Hybrid Films as an Efficient Photocatalyst by Polymeric Micelle Assembly. Chemistry - A European Journal, 2014, 20, 6027-6032.	3.3	123

#	Article	IF	CITATIONS
109	Superhydrophobic Materials: Fly-Eye Inspired Superhydrophobic Anti-Fogging Inorganic Nanostructures (Small 15/2014). Small, 2014, 10, 3000-3000.	10.0	3
110	Platinum dendritic nanoparticles with magnetic behavior. Journal of Applied Physics, 2014, 116, .	2.5	18
111	Worldwide outdoor round robin study of organic photovoltaic devices and modules. Solar Energy Materials and Solar Cells, 2014, 130, 281-290.	6.2	23
112	Recent progress on synthesis, multi-scale structure, and properties of Y–Si–O oxides. International Materials Reviews, 2014, 59, 357-383.	19.3	99
113	Novel synthesis of superparamagnetic Ni–Co–B nanoparticles and their effect on superconductor properties of MgB2. Acta Materialia, 2014, 70, 298-306.	7.9	19
114	In-situ One-step Hydrothermal Synthesis of a Lead Germanate-Graphene Composite as a Novel Anode Material for Lithium-Ion Batteries. Scientific Reports, 2014, 4, 7030.	3.3	16
115	Uncoupled surface spin induced exchange bias in α-MnO2 nanowires. Scientific Reports, 2014, 4, 6641.	3.3	39
116	A dye-sensitized visible light photocatalyst-Bi24O31Cl10. Scientific Reports, 2014, 4, 7384.	3.3	91
117	3D Hierarchical Rutile TiO2 and Metal-free Organic Sensitizer Producing Dye-sensitized Solar Cells 8.6% Conversion Efficiency. Scientific Reports, 2014, 4, 5769.	3.3	142
118	Electronic Coupling and Catalytic Effect on H2 Evolution of MoS2/Graphene Nanocatalyst. Scientific Reports, 2014, 4, 6256.	3.3	64
119	Robust superhydrophobicity of hierarchical ZnO hollow microspheres fabricated by two-step self-assembly. Nano Research, 2013, 6, 726-735.	10.4	60
120	Aqueous Colloidal Stability Evaluated by Zeta Potential Measurement and Resultant <scp><scp>TiO</scp></scp> ₂ for Superior Photovoltaic Performance. Journal of the American Ceramic Society, 2013, 96, 2636-2643.	3.8	26
121	The oxygen migration in the apatite-type lanthanum silicate with the cation substitution. Physical Chemistry Chemical Physics, 2013, 15, 17553.	2.8	16
122	Preparation of <scp><scp>Y</scp></scp> ₂ <scp>Si</scp> ₂ <scp><scp>Si</scp>₂<scp>O</scp>< Composites and Their Composition – Mechanical Properties – Tribology Relationships. Journal of the American Ceramic Society, 2013, 96, 3228-3238.</scp>	sub>7 <td>b>J<scp><so< td=""></so<></scp></td>	b>J <scp><so< td=""></so<></scp>
123	Architecture designed ZnO hollow microspheres with wide-range visible-light photoresponses. Journal of Materials Chemistry C, 2013, 1, 6924.	5.5	29
124	Morphology-controllable 1D–3D nanostructured TiO2bilayer photoanodes for dye-sensitized solar cells. Chemical Communications, 2013, 49, 966-968.	4.1	94
125	Structurally stabilized mesoporous TiO2 nanofibres for efficient dye-sensitized solar cells. APL Materials, 2013, 1, .	5.1	22
126	Chemically modified ribbon edge stimulated H2 dissociation: a first-principles computational study. Physical Chemistry Chemical Physics, 2013, 15, 8054.	2.8	22

#	Article	IF	CITATIONS
127	Charge carrier exchange at chemically modified graphene edges: a density functional theory study. Journal of Materials Chemistry, 2012, 22, 8321.	6.7	22
128	Continually adjustable oriented 1D TiO2 nanostructure arrays with controlled growth of morphology and their application in dye-sensitized solar cells. CrystEngComm, 2012, 14, 5472.	2.6	32
129	How to achieve maximum charge carrier loading on heteroatom-substituted graphene nanoribbon edges: density functional theory study. Journal of Materials Chemistry, 2012, 22, 13751.	6.7	22
130	Improved photovoltaic performance of dye-sensitized solar cells with modified self-assembling highly ordered mesoporous TiO2 photoanodes. Journal of Materials Chemistry, 2012, 22, 11711.	6.7	37
131	Electrochemical Properties and Intermediateâ€Temperature Fuel Cell Performance of Dense Yttriumâ€Doped Barium Zirconate with Calcium Addition. Journal of the American Ceramic Society, 2012, 95, 627-635.	3.8	81
132	A novel ionic diffusion strategy to fabricate high-performance anode-supported solid oxidefuel cells (SOFCs) with proton-conducting Y-doped BaZrO ₃ films. Energy and Environmental Science, 2011, 4, 409-412.	30.8	83
133	Lowering grain boundary resistance of BaZr _{0.8} Y _{0.2} O _{3â^î^} with LiNO ₃ sintering-aid improves proton conductivity for fuel cell operation. Physical Chemistry Chemical Physics, 2011, 13, 7692-7700.	2.8	121
134	Sinteractive anodic powders improve densification and electrochemical properties of BaZr0.8Y0.2O3â^δ electrolyte films for anode-supported solid oxide fuel cells. Energy and Environmental Science, 2011, 4, 1352.	30.8	118
135	BaZr0.8Y0.2O3â [~] î ⁻ NiO Composite Anodic Powders for Proton-Conducting SOFCs Prepared by a Combustion Method. Journal of the Electrochemical Society, 2011, 158, B797.	2.9	59
136	Position preference and diffusion path of an oxygen ion in apatite-type lanthanum silicate La9.33Si6O26: a density functional study. Journal of Materials Chemistry, 2011, 21, 3234.	6.7	33
137	Rational Design of 3D Dendritic TiO ₂ Nanostructures with Favorable Architectures. Journal of the American Chemical Society, 2011, 133, 19314-19317.	13.7	387
138	Sinteractivity, proton conductivity and chemical stability of BaZr0.7In0.3O3-δ for solid oxide fuel cells (SOFCs). Solid State Ionics, 2011, 196, 59-64.	2.7	66
139	Vacuum Ultraviolet/Atomic Oxygen Erosion Resistance of Amorphous Si0.26C0.43N0.31 Coating. Journal of Spacecraft and Rockets, 2011, 48, 507-512.	1.9	3
140	Electrophoretic Deposition of Ti ₃ Si(Al)C ₂ from Aqueous Suspension. Journal of the American Ceramic Society, 2010, 93, 1916-1921.	3.8	8
141	Preparation of Reticulated MAXâ€Phase Support with Morphologyâ€Controllable Nanostructured Ceria Coating for Gas Exhaust Catalyst Devices. Journal of the American Ceramic Society, 2010, 93, 2591-2597.	3.8	42
142	Hydrolysis and Dispersion Properties of Aqueous Y ₂ Si ₂ O ₇ Suspensions. Journal of the American Ceramic Society, 2009, 92, 54-61.	3.8	17
143	Surface Chemistry, Dispersion Behavior, and Slip Casting of Ti ₃ AlC ₂ Suspensions. Journal of the American Ceramic Society, 2009, 92, 1695-1702.	3.8	37
144	Tribological properties of Î ³ -Y2Si2O7 ceramic against AISI 52100 steel and Si3N4 ceramic counterparts. Wear, 2009, 266, 960-967.	3.1	17

#	Article	IF	CITATIONS
145	Thermal properties of single-phase Y2SiO5. Journal of the European Ceramic Society, 2009, 29, 551-557.	5.7	136
146	Amorphization by dislocation accumulation in shear bands. Acta Materialia, 2009, 57, 2851-2857.	7.9	34
147	Hot corrosion of Î ³ -Y2Si2O7 in strongly basic Na2CO3 molten salt environment. Journal of the European Ceramic Society, 2008, 28, 259-265.	5.7	25
148	Mechanical properties and damage tolerance of Y2SiO5. Journal of the European Ceramic Society, 2008, 28, 2895-2901.	5.7	73
149	Kinetics and Mechanism of Hot Corrosion of γâ€Y ₂ Si ₂ O ₇ in Thinâ€Film Na ₂ SO ₄ Molten Salt. Journal of the American Ceramic Society, 2008, 91, 2236-2242.	3.8	30
150	Thermal Properties and Thermal Shock Resistance of γ‥ ₂ Si ₂ O ₇ . Journal of the American Ceramic Society, 2008, 91, 2623-2629.	3.8	119
151	Tailoring Texture of γ‥ ₂ Si ₂ O ₇ by Strong Magnetic Field Alignment and Two‣tep Sintering. Journal of the American Ceramic Society, 2008, 91, 2521-2528.	3.8	12
152	Effect of LiYO ₂ on the synthesis and pressureless sintering of Y ₂ SiO ₅ . Journal of Materials Research, 2008, 23, 732-736.	2.6	36
153	?-Y2Si2O7, a Machinable Silicate Ceramic: Mechanical Properties and Machinability. Journal of the American Ceramic Society, 2007, 90, 2535-2541.	3.8	111
154	Low-temperature synthesis and sintering of γ-Y2Si2O7. Journal of Materials Research, 2006, 21, 1443-1450.	2.6	59
155	Cyclic-Oxidation Behavior of Ti3SiC2-Base Material at 1100°C. Oxidation of Metals, 2002, 57, 379-394.	2.1	26