Hye-Young Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/468263/publications.pdf

Version: 2024-02-01

80 papers

5,173 citations

201674 27 h-index 70 g-index

83 all docs 83 docs citations

times ranked

83

7031 citing authors

#	Article	IF	CITATIONS
1	<i>Selenomonas</i> : A marker of asthma severity with the potential therapeutic effect. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 317-320.	5.7	4
2	A unique population of neutrophils generated by air pollutant–induced lung damage exacerbates airway inflammation. Journal of Allergy and Clinical Immunology, 2022, 149, 1253-1269.e8.	2.9	13
3	OASL1-Mediated Inhibition of Type I IFN Reduces Influenza A Infection-Induced Airway Inflammation by Regulating ILC2s. Allergy, Asthma and Immunology Research, 2022, 14, 99.	2.9	3
4	Effect of $\langle i \rangle$ Acinetobacter lwoffii $\langle i \rangle$ on the modulation of macrophage activation and asthmatic inflammation. Clinical and Experimental Allergy, 2022, 52, 518-529.	2.9	10
5	Targeting the Epithelium-Derived Innate Cytokines: From Bench to Bedside. Immune Network, 2022, 22, e11.	3.6	14
6	Chronic rhinosinusitis endotypes associate with distinct local cytokine milieus that shape the distribution of innate lymphoid cells. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 2246-2250.	5.7	1
7	Siglec-Fâ \in expressing neutrophils are essential for creating a profibrotic microenvironment in renal fibrosis. Journal of Clinical Investigation, 2022, 132, .	8.2	19
8	The Dynamic Contribution of Neutrophils in the Chronic Respiratory Diseases. Allergy, Asthma and Immunology Research, 2022, 14, 361.	2.9	18
9	Cigarette smoke aggravates asthma by inducing memory-like type 3 innate lymphoid cells. Nature Communications, 2022, 13, .	12.8	14
10	Intratracheal administration of mesenchymal stem cells modulates lung macrophage polarization and exerts anti-asthmatic effects. Scientific Reports, 2022, 12, .	3.3	7
11	Ssu72 regulates alveolar macrophage development and allergic airway inflammation by fine-tuning of GM-CSF receptor signaling. Journal of Allergy and Clinical Immunology, 2021, 147, 1242-1260.	2.9	8
12	Interactions between NCR ⁺ ILC3s and the Microbiome in the Airways Shape Asthma Severity. Immune Network, 2021, 21, e25.	3.6	5
13	Increased GMâ€CSFâ€producing NCR ^{â€} ILC3s and neutrophils in the intestinal mucosa exacerbate inflammatory bowel disease. Clinical and Translational Immunology, 2021, 10, e1311.	3.8	16
14	Innate Lymphoid Cells in Tissue Homeostasis and Disease Pathogenesis. Molecules and Cells, 2021, 44, 301-309.	2.6	15
15	NK1.1 ^{â^'} natural killer T cells upregulate interleukin-17 expression in experimental lupus nephritis. American Journal of Physiology - Renal Physiology, 2021, 320, F772-F788.	2.7	5
16	Soluble Fas ligand drives autoantibody-induced arthritis by binding to DR5/TRAIL-R2. ELife, 2021, 10, .	6.0	5
17	Mesenchymal Stem Cells Suppress Severe Asthma by Directly Regulating Th2 Cells and Type 2 Innate Lymphoid Cells. Molecules and Cells, 2021, 44, 580-590.	2.6	17
18	Activation of formyl peptide receptor 1 elicits therapeutic effects against collagenâ€induced arthritis. Journal of Cellular and Molecular Medicine, 2021, 25, 8936-8946.	3.6	5

#	Article	IF	Citations
19	Ssu 72 phosphatase directly binds to ZAP- 70 , thereby providing fine-tuning of TCR signaling and preventing spontaneous inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2021 , 118 , .	7.1	4
20	Protective Effects of Korean Herbal Remedy against Airway Inflammation in an Allergic Asthma by Suppressing Eosinophil Recruitment and Infiltration in Lung. Antioxidants, 2021, 10, 6.	5.1	8
21	Serum amyloid A promotes emphysema by triggering the reciprocal activation of neutrophils and ILC3s. Clinical and Translational Medicine, 2021, 11, e637.	4.0	3
22	Aggravation of asthmatic inflammation by chlorine exposure via innate lymphoid cells and CD11c ^{intermediate} macrophages. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 381-391.	5.7	22
23	IL-17A–Producing Innate Lymphoid Cells Promote Skin Inflammation by Inducing IL-33–Driven Type 2 Immune Responses. Journal of Investigative Dermatology, 2020, 140, 827-837.e9.	0.7	17
24	Novel Sca-1+ macrophages modulate the pathogenic progress of endotoxemia. Biochemical and Biophysical Research Communications, 2020, 533, 83-89.	2.1	4
25	Tumor-Infiltrating Regulatory T-cell Accumulation in the Tumor Microenvironment Is Mediated by IL33/ST2 Signaling. Cancer Immunology Research, 2020, 8, 1393-1406.	3.4	28
26	Analysis of Innate and Adaptive Immunological Characteristics in Patients with IgG4-Related Disease. International Archives of Allergy and Immunology, 2020, 181, 807-812.	2.1	2
27	Altered T cell and monocyte subsets in prolonged immune reconstitution inflammatory syndrome related with DRESS (drug reaction with eosinophilia and systemic symptoms). Asia Pacific Allergy, 2020, 10, e2.	1.3	14
28	3′-Sialyllactose prebiotics prevents skin inflammation via regulatory T cell differentiation in atopic dermatitis mouse models. Scientific Reports, 2020, 10, 5603.	3.3	23
29	The effect of air pollutants on airway innate immune cells in patients with asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2372-2376.	5.7	13
30	Reduction of circulating innate lymphoid cell progenitors results in impaired cytokine production by innate lymphoid cells in patients with lupus nephritis. Arthritis Research and Therapy, 2020, 22, 63.	3.5	10
31	Alteration of Lung and Gut Microbiota in IL-13-Transgenic Mice Simulating Chronic Asthma. Journal of Microbiology and Biotechnology, 2020, 30, 1819-1826.	2.1	15
32	Blockade of RGMb inhibits allergen-induced airways disease. Journal of Allergy and Clinical Immunology, 2019, 144, 94-108.e11.	2.9	12
33	IL23-Producing Human Lung Cancer Cells Promote Tumor Growth via Conversion of Innate Lymphoid Cell 1 (ILC1) into ILC3. Clinical Cancer Research, 2019, 25, 4026-4037.	7.0	48
34	Invariant NKT Cells Functionally Link Microbiota-Induced Butyrate Production and Joint Inflammation. Journal of Immunology, 2019, 203, 3199-3208.	0.8	18
35	Innate immune crosstalk in asthmatic airways: Innate lymphoid cells coordinate polarization of lung macrophages. Journal of Allergy and Clinical Immunology, 2019, 143, 1769-1782.e11.	2.9	64
36	Ubiquitin E3 Ligase Pellino-1 Inhibits IL-10-mediated M2c Polarization of Macrophages, Thereby Suppressing Tumor Growth. Immune Network, 2019, 19, e32.	3.6	16

#	Article	IF	Citations
37	The invariant natural killer T cell–mediated chemokine X-C motif chemokine ligand 1–X-C motif chemokine receptor 1 axis promotes allergic airway hyperresponsiveness by recruiting CD103+ dendritic cells. Journal of Allergy and Clinical Immunology, 2018, 142, 1781-1792.e12.	2.9	16
38	Sodium chloride inhibits IFN- \hat{l}^3 , but not IL-4, production by invariant NKT cells. Journal of Leukocyte Biology, 2018, 103, 99-106.	3.3	3
39	Lipid-Reactive T Cells in Immunological Disorders of the Lung. Frontiers in Immunology, 2018, 9, 2205.	4.8	0
40	Initial Influenza Virus Replication Can Be Limited in Allergic Asthma Through Rapid Induction of Type III Interferons in Respiratory Epithelium. Frontiers in Immunology, 2018, 9, 986.	4.8	20
41	Palmitate induces lipoapoptosis in Schwann cells through ROS generation-mediated STAMP2 downregulation. Biochemical and Biophysical Research Communications, 2018, 503, 1260-1266.	2.1	14
42	Rpd3L HDAC links H3K4me3 to transcriptional repression memory. Nucleic Acids Research, 2018, 46, 8261-8274.	14.5	41
43	IL-23 secreted by bronchial epithelial cells contributes to allergic sensitization in asthma model: role of IL-23 secreted by bronchial epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L13-L21.	2.9	29
44	Cytosolic Pellino-1-Mediated K63-Linked Ubiquitination of IRF5 in M1 Macrophages Regulates Glucose Intolerance in Obesity. Cell Reports, 2017, 20, 832-845.	6.4	36
45	Palmitate inhibits arthritis by inducing t-bet and gata-3 mRNA degradation in iNKT cells via IRE1α-dependent decay. Scientific Reports, 2017, 7, 14940.	3.3	19
46	Resveratrol in Asthma: A French Paradox?. Allergy, Asthma and Immunology Research, 2017, 9, 1.	2.9	4
47	Functional Defects in Type 3 Innate Lymphoid Cells and Classical Monocytes in a Patient with Hyper-IgE Syndrome. Immune Network, 2017, 17, 352.	3.6	7
48	Innate lymphoid cells in asthma: Will they take your breath away?. European Journal of Immunology, 2016, 46, 795-806.	2.9	64
49	Thalidomide Inhibits Alternative Activation of Macrophages In Vivo and In Vitro: A Potential Mechanism of Anti-Asthmatic Effect of Thalidomide. PLoS ONE, 2015, 10, e0123094.	2.5	14
50	The Roles of Innate Lymphoid Cells in the Development of Asthma. Immune Network, 2014, 14, 171.	3. 6	23
51	Pivotal role of IL-6 in the hyperinflammatory responses to subacute ozone in adiponectin-deficient mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L508-L520.	2.9	22
52	Innate lymphoid cells and asthma. Journal of Allergy and Clinical Immunology, 2014, 133, 943-950.	2.9	93
53	Interleukin-17–producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nature Medicine, 2014, 20, 54-61.	30.7	515
54	Two distinct domains of Flo8 activator mediates its role in transcriptional activation and the physical interaction with Mss11. Biochemical and Biophysical Research Communications, 2014, 449, 202-207.	2.1	19

#	Article	IF	CITATIONS
55	Innate immunity in the lung regulates the development of asthma. Immunological Reviews, 2014, 260, 235-248.	6.0	56
56	Innate immunity in asthma. Allergy Asthma & Respiratory Disease, 2014, 2, 317.	0.2	1
57	T-cell immunoglobulin and mucin domain 1 deficiency eliminates airway hyperreactivity triggered by the recognition of airway cell death. Journal of Allergy and Clinical Immunology, 2013, 132, 414-425.e6.	2.9	24
58	Intronic SH2D1A mutation with impaired SAP expression and agammaglobulinemia. Clinical Immunology, 2013, 146, 84-89.	3.2	6
59	Invariant natural killer T cells recognize a fungal glycosphingolipid that can induce airway hyperreactivity. Nature Medicine, 2013, 19, 1297-1304.	30.7	124
60	Pulmonary Inflammation Induced by Subacute Ozone Is Augmented in Adiponectin-Deficient Mice: Role of IL-17A. Journal of Immunology, 2012, 188, 4558-4567.	0.8	63
61	Innate lymphoid cells responding to IL-33 mediate airway hyperreactivity independently of adaptive immunity. Journal of Allergy and Clinical Immunology, 2012, 129, 216-227.e6.	2.9	287
62	Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature, 2012, 482, 395-399.	27.8	733
63	Direct Engagement of TLR4 in Invariant NKT Cells Regulates Immune Diseases by Differential IL-4 and IFN-Î ³ Production in Mice. PLoS ONE, 2012, 7, e45348.	2.5	20
64	Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nature Immunology, 2011, 12, 631-638.	14.5	722
65	A polymorphism in TIM1 is associated with susceptibility to severe hepatitis A virus infection in humans. Journal of Clinical Investigation, 2011, 121, 1111-1118.	8.2	68
66	Influenza infection in suckling mice expands an NKT cell subset that protects against airway hyperreactivity. Journal of Clinical Investigation, 2011, 121, 57-69.	8.2	137
67	FTY720, a sphingosine 1-phosphate receptor modulator, inhibits CD1d-restricted NKT cells by suppressing cytokine production but not migration. Laboratory Investigation, 2010, 90, 9-19.	3.7	11
68	The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nature Immunology, 2010, 11, 577-584.	14.5	498
69	Apoptotic Cells Activate NKT Cells through T Cell Ig-Like Mucin-Like–1 Resulting in Airway Hyperreactivity. Journal of Immunology, 2010, 185, 5225-5235.	0.8	67
70	In vivo regulation of the allergic response by the IL-4 receptor \hat{l}_{\pm} chain immunoreceptor tyrosine-based inhibitory motif. Journal of Allergy and Clinical Immunology, 2010, 125, 1128-1136.e8.	2.9	60
71	The Development of Airway Hyperreactivity in T-bet-Deficient Mice Requires CD1d-Restricted NKT Cells. Journal of Immunology, 2009, 182, 3252-3261.	0.8	29
72	Natural killer T cells in the lungs of patients with asthma. Journal of Allergy and Clinical Immunology, 2009, 123, 1181-1185.e1.	2.9	72

#	Article	IF	CITATION
73	Exaggerated IL-17 response to epicutaneous sensitization mediates airway inflammation in the absence of IL-4 and IL-13. Journal of Allergy and Clinical Immunology, 2009, 124, 761-770.e1.	2.9	102
74	Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17. Journal of Experimental Medicine, 2008, 205, 385-393.	8.5	285
75	Activation of Nonclassical CD1d-Restricted NK T Cells Induces Airway Hyperreactivity in Î ² 2-Microglobulin-Deficient Mice. Journal of Immunology, 2008, 181, 4560-4569.	0.8	27
76	Engagement of Glucocorticoid-Induced TNF Receptor Costimulates NKT Cell Activation In Vitro and In Vivo. Journal of Immunology, 2006, 176, 3507-3515.	0.8	34
77	FcgRIII engagement provides activating signals to NKT cells in antibody-induced joint inflammation. Journal of Clinical Investigation, 2006, 116 , $2484-92$.	8.2	57
78	NKT cells promote antibody-induced joint inflammation by suppressing transforming growth factor \hat{l}^21 production. Journal of Experimental Medicine, 2005, 201, 41-47.	8.5	126
79	Natural Killer T (NKT) Cells Attenuate Bleomycin-Induced Pulmonary Fibrosis by Producing Interferon-Î ³ . American Journal of Pathology, 2005, 167, 1231-1241.	3.8	79
80	Recruitment of the Swi/Snf Complex by Ste12-Tec1 Promotes Flo8-Mss11-Mediated Activation of STA1 Expression. Molecular and Cellular Biology, 2004, 24, 9542-9556.	2.3	44