Jun Hyuk Moon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4682266/publications.pdf Version: 2024-02-01

Ιυν Ηγυκ Μοον

#	Article	IF	CITATIONS
1	Spherical Macroporous Carbon Nanotube Particles with Ultrahigh Sulfur Loading for Lithium–Sulfur Battery Cathodes. ACS Nano, 2018, 12, 226-233.	14.6	269
2	Chemical Aspects of Three-Dimensional Photonic Crystals. Chemical Reviews, 2010, 110, 547-574.	47.7	239
3	Monodispersed N-Doped Carbon Nanospheres for Supercapacitor Application. ACS Applied Materials & Interfaces, 2014, 6, 13968-13976.	8.0	202
4	Fabricating three-dimensional polymeric photonic structures by multi-beam interference lithography. Polymers for Advanced Technologies, 2006, 17, 83-93.	3.2	162
5	Superhydrophobic Films of Electrospun Fibers with Multiple-Scale Surface Morphology. Langmuir, 2007, 23, 7981-7989.	3.5	160
6	MnO ₂ Nanoflake-Shelled Carbon Nanotube Particles for High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2017, 5, 2445-2453.	6.7	115
7	Ordered Macroporous Particles by Colloidal Templating. Chemistry of Materials, 2001, 13, 2613-2618.	6.7	110
8	Hierarchically Porous TiO ₂ Electrodes Fabricated by Dual Templating Methods for Dye‧ensitized Solar Cells. Advanced Materials, 2011, 23, 2971-2975.	21.0	107
9	Biologically inspired humidity sensor based on three-dimensional photonic crystals. Applied Physics Letters, 2010, 97, .	3.3	105
10	Thermoresponsive Hydrogel Photonic Crystals by Threeâ€Đimensional Holographic Lithography. Advanced Materials, 2008, 20, 3061-3065.	21.0	98
11	Fabrication of One-Dimensional Colloidal Assemblies from Electrospun Nanofibers. Langmuir, 2006, 22, 3445-3449.	3.5	97
12	Fabrication of Ordered Macroporous Cylinders by Colloidal Templating in Microcapillaries. Langmuir, 2004, 20, 2033-2035.	3.5	88
13	Double-Deck Inverse Opal Photoanodes: Efficient Light Absorption and Charge Separation in Heterojunction. Chemistry of Materials, 2014, 26, 5592-5597.	6.7	88
14	Low-coordinated surface atoms of CuPt alloy cocatalysts on TiO ₂ for enhanced photocatalytic conversion of CO ₂ . Nanoscale, 2016, 8, 10043-10048.	5.6	80
15	Complete encapsulation of sulfur through interfacial energy control of sulfur solutions for high-performance Liâr'S batteries. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12686-12692.	7.1	80
16	Ultrahigh Electrocatalytic Conversion of Methane at Room Temperature. Advanced Science, 2017, 4, 1700379.	11.2	73
17	Electrodeposition of Three-Dimensional Titania Photonic Crystals from Holographically Patterned Microporous Polymer Templates. Chemistry of Materials, 2008, 20, 1816-1823.	6.7	71
18	Role of Surface States in Photocatalysis: Study of Chlorine-Passivated CdSe Nanocrystals for Photocatalytic Hydrogen Generation. Chemistry of Materials, 2016, 28, 962-968.	6.7	71

#	Article	IF	CITATIONS
19	Carbon-Deposited TiO ₂ 3D Inverse Opal Photocatalysts: Visible-Light Photocatalytic Activity and Enhanced Activity in a Viscous Solution. ACS Applied Materials & Interfaces, 2013, 5, 12526-12532.	8.0	68
20	Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing. Lab on A Chip, 2009, 9, 3144.	6.0	66
21	Consensus statement: Standardized reporting of power-producing luminescent solar concentrator performance. Joule, 2022, 6, 8-15.	24.0	66
22	Enhanced Photovoltaic Properties of Nb ₂ O ₅ -Coated TiO ₂ 3D Ordered Porous Electrodes in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2012, 4, 5821-5825.	8.0	64
23	Demulsification of water-in-crude oil emulsions by a continuous electrostatic dehydrator. Separation Science and Technology, 2002, 37, 1307-1320.	2.5	62
24	Silicon/copper dome-patterned electrodes for high-performance hybrid supercapacitors. Scientific Reports, 2013, 3, 3183.	3.3	62
25	Nitrogen-Doped Carbon Nanotube Spherical Particles for Supercapacitor Applications: Emulsion-Assisted Compact Packing and Capacitance Enhancement. ACS Applied Materials & Interfaces, 2015, 7, 20083-20089.	8.0	62
26	Packings of Uniform Microspheres with Ordered Macropores Fabricated by Double Templating. Journal of the American Chemical Society, 2002, 124, 13354-13355.	13.7	59
27	Polyamide–POSS hybrid membranes for seawater desalination: Effect of POSS inclusion on membrane properties. Journal of Membrane Science, 2014, 461, 89-95.	8.2	59
28	Full lithographic fabrication of boron-doped 3D porous carbon patterns for high volumetric energy density microsupercapacitors. Nano Energy, 2018, 53, 182-188.	16.0	57
29	Graphene-embedded 3D TiO2 inverse opal electrodes for highly efficient dye-sensitized solar cells: morphological characteristics and photocurrent enhancement. Nanoscale, 2013, 5, 4200.	5.6	56
30	Holographic fabrication of photonic nanostructures for optofluidic integration. Lab on A Chip, 2008, 8, 388.	6.0	54
31	Pixellated Photonic Crystal Films by Selective Photopolymerization. Advanced Materials, 2006, 18, 2111-2116.	21.0	52
32	Inverse Opal Carbons for Counter Electrode of Dye-Sensitized Solar Cells. Langmuir, 2012, 28, 7033-7038.	3.5	52
33	Interplay between electrochemical reactions and mechanical responses in silicon–graphite anodes and its impact on degradation. Nature Communications, 2021, 12, 2714.	12.8	51
34	Facile Synthesis of TiO ₂ Inverse Opal Electrodes for Dye-Sensitized Solar Cells. Langmuir, 2011, 27, 856-860.	3.5	47
35	Upconversion-Assisted Dual-Band Luminescent Solar Concentrator Coupled for High Power Conversion Efficiency Photovoltaic Systems. ACS Photonics, 2018, 5, 3621-3627.	6.6	45
36	Fabrication of Spherical Colloidal Crystals Using Electrospray. Langmuir, 2005, 21, 10416-10421.	3.5	44

#	Article	IF	CITATIONS
37	Creating Threeâ€Dimensional Polymeric Microstructures by Multiâ€Beam Interference Lithography. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2005, 45, 351-373.	2.2	43
38	Synthesis of Porous Carbon Balls from Spherical Colloidal Crystal Templates. Langmuir, 2012, 28, 10543-10550.	3.5	42
39	Particulate Inverse Opal Carbon Electrodes for Lithium-Ion Batteries. Langmuir, 2013, 29, 1192-1198.	3.5	41
40	Highâ€Throughput Synthesis of Anisotropic Colloids via Holographic Lithography. Advanced Materials, 2007, 19, 2508-2512.	21.0	40
41	Bilayer Inverse Opal TiO ₂ Electrodes for Dye-Sensitized Solar Cells via Post-Treatment. Langmuir, 2011, 27, 6311-6315.	3.5	40
42	Poly(glycidyl methacrylate)s with controlled molecular weights as low-shrinkage resins for 3D multibeam interference lithography. Journal of Materials Chemistry, 2008, 18, 3316.	6.7	39
43	Direct fabrication of 3D silica-like microstructures from epoxy-functionalized polyhedral oligomeric silsesquioxane (POSS). Journal of Materials Chemistry, 2009, 19, 4687.	6.7	39
44	Anisotropic wetting and superhydrophobicity on holographically featured 3D nanostructured surfaces. Soft Matter, 2012, 8, 4567.	2.7	39
45	Mesoscopic CH ₃ NH ₃ PbI ₃ perovskite solar cells using TiO ₂ inverse opal electron-conducting scaffolds. Journal of Materials Chemistry A, 2017, 5, 1972-1977.	10.3	39
46	Electrochemical CH4 oxidation into acids and ketones on ZrO2:NiCo2O4 quasi-solid solution nanowire catalyst. Applied Catalysis B: Environmental, 2019, 259, 118095.	20.2	39
47	2D photonic crystal nanodisk array as electron transport layer for highly efficient perovskite solar cells. Nano Energy, 2019, 56, 365-372.	16.0	39
48	Core-shell diamond-like silicon photonic crystals from 3D polymer templates created by holographic lithography. Optics Express, 2006, 14, 6297.	3.4	38
49	Constructing inverse opal structured hematite photoanodes via electrochemical process and their application to photoelectrochemical water splitting. Physical Chemistry Chemical Physics, 2013, 15, 11717.	2.8	38
50	Facile fabrication of sub-100â€nm mesoscale inverse opal films and their application in dye-sensitized solar cell electrodes. Scientific Reports, 2014, 4, 6804.	3.3	38
51	Controlled Unusual Stiffness of Mechanical Metamaterials. Scientific Reports, 2016, 6, 20312.	3.3	38
52	Triply Periodic Bicontinuous Structures as Templates for Photonic Crystals: A Pinch-off Problem. Advanced Materials, 2007, 19, 1510-1514.	21.0	36
53	Carbon Nanotube Balls and Their Application in Supercapacitors. ACS Applied Materials & Interfaces, 2014, 6, 706-711.	8.0	36
54	Enhanced Photoelectrochemical Water Splitting through Bismuth Vanadate with a Photon Upconversion Luminescent Reflector. Angewandte Chemie - International Edition, 2019, 58, 6891-6895.	13.8	36

#	Article	IF	CITATIONS
55	Inverse opal tungsten trioxide films with mesoporous skeletons: synthesis and photoelectrochemical responses. Chemical Communications, 2012, 48, 11939.	4.1	35
56	Three-Dimensional Bicontinuous BiVO ₄ /ZnO Photoanodes for High Solar Water-Splitting Performance at Low Bias Potential. ACS Applied Materials & Interfaces, 2018, 10, 34238-34244.	8.0	35
57	Multiple-exposure holographic lithography with phase shift. Applied Physics Letters, 2004, 85, 4184-4186.	3.3	34
58	Fabrication of hollow colloidal crystal cylinders and their inverted polymeric replicas. Journal of Colloid and Interface Science, 2005, 287, 173-177.	9.4	32
59	Hierarchical Twin-Scale Inverse Opal TiO ₂ Electrodes for Dye-Sensitized Solar Cells. Langmuir, 2012, 28, 9372-9377.	3.5	32
60	Dual Functions of Clay Nanoparticles with High Aspect Ratio in Dye-Sensitized Solar Cells. Electrochemical and Solid-State Letters, 2008, 11, B171.	2.2	31
61	Si nanoparticles-nested inverse opal carbon supports for highly stable lithium-ion battery anodes. Journal of Materials Chemistry A, 2015, 3, 23684-23689.	10.3	31
62	Lithographically Defined Three-dimensional Pore-patterned Carbon with Nitrogen Doping for High-Performance Ultrathin Supercapacitor Applications. Scientific Reports, 2014, 4, 5392.	3.3	31
63	Solar Cell-Powered Electrochemical Methane-to-Methanol Conversion with CuO/CeO ₂ Catalysts. ACS Energy Letters, 2021, 6, 893-899.	17.4	31
64	Colloidal assembly in droplets: structures and optical properties. Nanoscale, 2020, 12, 18576-18594.	5.6	29
65	Macrocrystalline Colloidal Assemblies in an Electric Field. Advanced Materials, 2001, 13, 1185-1188.	21.0	28
66	Polydopamine-wrapped, silicon nanoparticle-impregnated macroporous CNT particles: rational design of high-performance lithium-ion battery anodes. Chemical Communications, 2019, 55, 361-364.	4.1	27
67	Patterned polymer photonic crystals using soft lithography and holographic lithography. Synthetic Metals, 2005, 148, 99-102.	3.9	26
68	1D nanorod-planted 3D inverse opal structures for use in dye-sensitized solar cells. Nanoscale, 2014, 6, 3105-3109.	5.6	25
69	Multiscale Nanopatterns Templated from Two-Dimensional Assemblies of Photoresist Particles. Advanced Materials, 2005, 17, 2559-2562.	21.0	24
70	Colloidal lithography with crosslinkable particles: fabrication of hierarchical nanopore arrays. Chemical Communications, 2005, , 4107.	4.1	24
71	Exploring the Janus structure to improve kinetics in sulfur conversion of Li-S batteries. Nano Energy, 2022, 95, 106980.	16.0	24
72	Observation of Positive Effects of Freestanding Scattering Film in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2010, 2, 288-291.	8.0	23

#	Article	IF	CITATIONS
73	Fabrication of 3D Copper Oxide Structure by Holographic Lithography for Photoelectrochemical Electrodes. ACS Applied Materials & Interfaces, 2010, 2, 2982-2986.	8.0	23
74	Highly N-doped microporous carbon nanospheres with high energy storage and conversion efficiency. Scientific Reports, 2017, 7, 14400.	3.3	23
75	Controlled Assembly of Icosahedral Colloidal Clusters for Structural Coloration. Chemistry of Materials, 2020, 32, 9704-9712.	6.7	23
76	Microdomain sulfur-impregnated CeO2-coated CNT particles for high-performance Li-S batteries. Chemical Engineering Journal, 2020, 390, 124548.	12.7	23
77	Spherical graphene and Si nanoparticle composite particles for high-performance lithium batteries. Korean Journal of Chemical Engineering, 2017, 34, 3195-3199.	2.7	22
78	Connected Open Structures from Close-Packed Colloidal Crystals by Hyperthermal Neutral Beam Etching. Langmuir, 2005, 21, 10770-10775.	3.5	21
79	Dry etching of colloidal crystal films. Journal of Colloid and Interface Science, 2010, 341, 209-214.	9.4	21
80	Monolithic multiscale bilayer inverse opal electrodes for dye-sensitized solar cell applications. Nanoscale, 2015, 7, 5164-5168.	5.6	21
81	Polyhedral TiO2 particle-based cathode for Li-S batteries with high volumetric capacity and high performance in lean electrolyte. Chemical Engineering Journal, 2020, 399, 125670.	12.7	21
82	Mesoporous Carbonâ€īiO ₂ Beads with Nanotextured Surfaces as Photoanodes in Dyeâ€Sensitized Solar Cells. ChemSusChem, 2014, 7, 2590-2596.	6.8	20
83	Formation of Stable Solid–Electrolyte Interphase Layer on Few-Layer Graphene-Coated Silicon Nanoparticles for High-Capacity Li-Ion Battery Anodes. Journal of Physical Chemistry C, 2017, 121, 26155-26162.	3.1	20
84	Hollow Polypyrrole Films: Applications for Energy Storage Devices. Journal of the Electrochemical Society, 2012, 159, A1052-A1056.	2.9	19
85	Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity. Scientific Reports, 2015, 5, 18185.	3.3	19
86	Hierarchical Pore-Patterned Carbon Electrodes for High-Volumetric Energy Density Micro-Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 19682-19688.	8.0	19
87	Textileâ€Type Lithiumâ€Ion Battery Cathode Enabling High Specific/Areal Capacities and High Rate Capability through Ligand Replacement Reactionâ€Mediated Assembly. Advanced Energy Materials, 2021, 11, 2101631.	19.5	19
88	Photon upconversion-assisted dual-band luminescence solar concentrators coupled with perovskite solar cells for highly efficient semi-transparent photovoltaic systems. Nanoscale, 2020, 12, 12426-12431.	5.6	18
89	Holographically Defined TiO2 Electrodes for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2010, 2, 2970-2973.	8.0	17
90	Monolithic Two-Dimensional Photonic Crystal Reflectors for the Fabrication of Highly Efficient and Highly Transparent Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 37006-37012.	8.0	17

Jun Ηγυκ Μοον

#	Article	IF	CITATIONS
91	Room Temperature Chemical Vapor Deposition for Fabrication of Titania Inverse Opals: Fabrication, Morphology Analysis and Optical Characterization. Bulletin of the Korean Chemical Society, 2009, 30, 2245-2248.	1.9	17
92	Translation of interference pattern by phase shift for diamond photonic crystals. Optics Express, 2005, 13, 9841.	3.4	16
93	Holographic Fabrication of Microstructures with Internal Nanopatterns Using Microprism Arrays. Angewandte Chemie - International Edition, 2009, 48, 7000-7005.	13.8	16
94	In situ Poly(methyl methacrylate)/Graphene Composite Gel Electrolytes for Highly Stable Dye‧ensitized Solar Cells. ChemSusChem, 2015, 8, 3799-3804.	6.8	16
95	Growth of BiVO ₄ nanoparticles on a WO ₃ porous scaffold: improved water-splitting by high band-edge light harvesting. Journal of Materials Chemistry A, 2019, 7, 4480-4485.	10.3	16
96	Uncertainty analysis of measurements of the size of nanoparticles in aqueous solutions using dynamic light scattering. Metrologia, 2011, 48, 417-425.	1.2	15
97	Surface modification of 2D/3D SU-8 patterns with a swelling–deswelling method. Soft Matter, 2011, 7, 2989.	2.7	14
98	In-situ fabrication of macroporous films for dye-sensitised solar cells: formation of the scattering layer and the gelation of electrolytes. Scientific Reports, 2014, 4, 5375.	3.3	14
99	Photonic band-gap structures of core-shell simple cubic crystals from holographic lithography. Applied Physics Letters, 2006, 88, 121101.	3.3	13
100	N-doped mesoporous inverse opal structures for visible-light photocatalysts. RSC Advances, 2015, 5, 77716-77722.	3.6	13
101	Three-Dimensional Polymeric Mechanical Metamaterials Fabricated by Multibeam Interference Lithography with the Assistance of Plasma Etching. Langmuir, 2016, 32, 8436-8441.	3.5	13
102	A Layerâ€byâ€Layer Assembly Route to Electroplated Fibrilâ€Based 3D Porous Current Collectors for Energy Storage Devices. Small, 2021, 17, e2007579.	10.0	13
103	Photocorrosion-Assisted Transformation of Metal Selenide Nanocrystals into Crystalline Selenium Nanowires. Crystal Growth and Design, 2014, 14, 1258-1263.	3.0	12
104	Uniformly dispersed silicon nanoparticle/carbon nanosphere composites as highly stable lithium-ion battery electrodes. RSC Advances, 2015, 5, 17424-17428.	3.6	12
105	Dual-Band Luminescent Solar Converter-Coupled Dye-Sensitized Solar Cells for High-Performance Semitransparent Photovoltaic Device. ACS Applied Energy Materials, 2020, 3, 5277-5284.	5.1	12
106	3D Bicontinuous Structure of a Pseudocapacitive Ultrathin Shell/Carbon Core: A Novel Electrode for Thin-Film Supercapacitors with High Areal Energy Density. ACS Sustainable Chemistry and Engineering, 2020, 8, 14711-14717.	6.7	10
107	Dual-sensitized upconversion-assisted, triple-band absorbing luminescent solar concentrators. Nanoscale, 2020, 12, 17265-17271.	5.6	10
108	Supported pyrolysis for lithographically defined 3D carbon microstructures. Journal of Materials Chemistry, 2011, 21, 14456.	6.7	9

#	Article	IF	CITATIONS
109	Study of architectural responses of 3D periodic cellular materials. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 065018.	2.0	9
110	Characterization of charge transport properties of a 3D electrode for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 10835.	2.8	9
111	ZnO-treated TiO2 inverse opal electrodes for dye-sensitized solar cells. Current Applied Physics, 2013, 13, 841-845.	2.4	9
112	Tetrapod CdSe-sensitized macroporous inverse opal electrodes for photo-electrochemical applications. Journal of Materials Chemistry A, 2014, 2, 17568-17573.	10.3	9
113	3D bicontinuous SnO ₂ /TiO ₂ core/shell structures for highly efficient organic dye-sensitized solar cell electrodes. RSC Advances, 2016, 6, 74003-74008.	3.6	9
114	Bilayer quantum dot-decorated mesoscopic inverse opals for high volumetric photoelectrochemical water splitting efficiency. RSC Advances, 2016, 6, 8756-8762.	3.6	9
115	Unveiling the Effects of Nanostructures and Core Materials on Charge-Transport Dynamics in Heterojunction Electrodes for Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 21894-21902.	8.0	9
116	Chargeâ€Transfer Effects of Organic Ligands on Energy Storage Performance of Oxide Nanoparticleâ€Based Electrodes. Advanced Functional Materials, 2022, 32, 2106438.	14.9	9
117	Discovery of Dualâ€Functional Amorphous Titanium Suboxide to Promote Polysulfide Adsorption and Regulate Sulfide Growth in Li–S Batteries. Advanced Science, 2022, 9, .	11.2	9
118	3D Wovenâ€Like Carbon Micropattern Decorated with Silicon Nanoparticles for Use in Lithiumâ€lon Batteries. ChemSusChem, 2015, 8, 3414-3418.	6.8	8
119	Highly Improved Ion Diffusion through Mesoscopically Ordered Porous Photoelectrodes. Journal of Physical Chemistry C, 2017, 121, 12046-12052.	3.1	8
120	Bottom-up Growth of Hierarchical Electrodes for Highly Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2012, 4, 3589-3595.	8.0	7
121	Highly improved photocurrents of dye-sensitized solar cells containing ultrathin 3D inverse opal electrodes sensitized with a dithienothiophene-based organic dye. RSC Advances, 2014, 4, 40980-40984.	3.6	7
122	Uniform Decoration of CdS Nanoparticles on TiO2 Inverse Opals for Visible Light Photoelectrochemical Cell. Electrochimica Acta, 2015, 166, 350-355.	5.2	7
123	Carbon-coated silicon nanoparticle-embedded carbon sphere assembly electrodes with enhanced performance for lithium-ion batteries. RSC Advances, 2016, 6, 38012-38017.	3.6	7
124	Fabrication of Inorganic Inverse Opals by Hetero-Colloidal Self-Assembly. Journal of Dispersion Science and Technology, 2010, 31, 368-376.	2.4	6
125	Synthesis of snowman-shaped microparticles by monomer swelling and polymerization of crosslinked seed particles. Korean Journal of Chemical Engineering, 2012, 29, 1102-1107.	2.7	6
126	In Situ Gelation of Poly(vinylidene fluoride) Nanospheres for Dye-Sensitized Solar Cells: The Analysis on the Efficiency Enhancement upon Gelation. Langmuir, 2016, 32, 7735-7740.	3.5	6

#	Article	IF	CITATIONS
127	Stability of PS Opals in Supercritical Carbon Dioxide and Synthesis of Silica Inverse Opals. Bulletin of the Korean Chemical Society, 2011, 32, 2178-2182.	1.9	6
128	Balancing Electrolyte Donicity and Cathode Adsorption Capacity for Highâ€Performance LiS Batteries. Small, 2022, 18, e2201416.	10.0	5
129	Quasi-solid-state Dye-sensitized Solar Cells with Macropore-containing Hierarchical Electrodes. Electrochimica Acta, 2014, 135, 192-198.	5.2	4
130	Geometric Effect of Grating-Patterned Electrode for High Conversion Efficiency of Dye-Sensitized Solar Cells. Multiscale Science and Engineering, 2019, 1, 161-166.	1.7	4
131	Enhanced Photoelectrochemical Water Splitting through Bismuth Vanadate with a Photon Upconversion Luminescent Reflector. Angewandte Chemie, 2019, 131, 6965-6969.	2.0	4
132	High-capacity sulfur copolymer cathode with metallic fibril-based current collector and conductive capping layer. Journal of Materials Chemistry A, 2021, 9, 2334-2344.	10.3	4
133	Enhanced Photocurrent Density of Tungsten Oxide Hollow Particle Arrays Produced by Colloidal Template Synthesis. Journal of Nanoscience and Nanotechnology, 2011, 11, 1538-1541.	0.9	3
134	Carbon-deposited TiO ₂ nanoparticle balls for high-performance visible photocatalysis. RSC Advances, 2014, 4, 55371-55376.	3.6	3
135	Core-shell diamond-like silicon photonic crystals from 3D polymer templates created by holographic lithography. , 2007, , .		3
136	Length shortening and surfactant mixing behavior of nonionic/ionic mixed cylindrical micelle. Chemical Physics Letters, 2008, 464, 82-86.	2.6	2
137	Facile synthesis of microporous carbon spheres by selective pyrolysis. RSC Advances, 2012, 2, 8934.	3.6	2
138	3D periodic composite nanopatterns with superior mechanical properties: the effect of nanoparticles on pattern contrast and mechanical properties. RSC Advances, 2014, 4, 32348.	3.6	2
139	Holographic fabrication of photonic nanostructures for optofluidic integration. Proceedings of SPIE, 2007, , .	0.8	1
140	Fabrication of two-dimensional photonic crystals of nonspherical atoms by holographic lithography. , 2004, , .		0
141	Holographic fabrication of hierarchical nanostructures using microprism array toward optofluidic integration. , 2008, , .		0
142	Band gap control of colloidal photonic crystal by hyperthermal neutral beam etching. , 2010, , .		0
143	Fabrication of two-dimensional multiscale patterns by holographic lithography. , 2010, , .		0

#	Article	IF	CITATIONS
145	Feasibility Study for Biological Membranes by Using a New Neutron Reflectometer at the HANARO. Journal of the Korean Physical Society, 2008, 53, 1944-1950.	0.7	0