Pierre Magal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4682120/publications.pdf Version: 2024-02-01

DIEDDE MACAL

#	Article	IF	CITATIONS
1	Modeling Vaccine Efficacy for COVID-19 Outbreak in New York City. Biology, 2022, 11, 345.	2.8	15
2	Real-Time Prediction of the End of an Epidemic Wave: COVID-19 in China as a Case-Study. Fields Institute Communications, 2022, , 173-195.	1.3	2
3	Return-to-home model for short-range human travel. Mathematical Biosciences and Engineering, 2022, 19, 7737-7755.	1.9	1
4	Large speed traveling waves for the Rosenzweig–MacArthur predator–prey model with spatial diffusion. Physica D: Nonlinear Phenomena, 2021, 415, 132730.	2.8	10
5	Bogdanov–Takens bifurcation in a predator–prey model with age structure. Zeitschrift Fur Angewandte Mathematik Und Physik, 2021, 72, 1.	1.4	3
6	Positively invariant subset for non-densely defined Cauchy problems. Journal of Mathematical Analysis and Applications, 2021, 494, 124600.	1.0	1
7	Predicting the number of reported and unreported cases for the COVID-19 epidemics in China, South Korea, Italy, France, Germany and United Kingdom. Journal of Theoretical Biology, 2021, 509, 110501.	1.7	72
8	Clarifying predictions for COVID-19 from testing data: The example of New York State. Infectious Disease Modelling, 2021, 6, 273-283.	1.9	14
9	Sharp discontinuous traveling waves in a hyperbolic Keller–Segel equation. Mathematical Models and Methods in Applied Sciences, 2021, 31, 861-905.	3.3	3
10	An integrated semigroup approach for age structured equations with diffusion and non-homogeneous boundary conditions. Nonlinear Differential Equations and Applications, 2021, 28, 1.	0.8	2
11	A Model of Vaccination for Dengue in the Philippines 2016–2018. Frontiers in Applied Mathematics and Statistics, 2021, 7, .	1.3	6
12	Existence and uniqueness of solutions for a hyperbolic Keller�CSegel equation. Discrete and Continuous Dynamical Systems - Series B, 2021, 26, 1931-1966.	0.9	5
13	Variation of constants formula andÂexponential dichotomy for nonautonomous non-densely defined Cauchy problems. Canadian Journal of Mathematics, 2021, 73, 1347-1389.	0.6	4
14	What can we learn from COVID-19 data by using epidemic models with unidentified infectious cases?. Mathematical Biosciences and Engineering, 2021, 19, 537-594.	1.9	12
15	Identifying the number of unreported cases in SIR epidemic models. Mathematical Medicine and Biology, 2020, 37, 243-261.	1.2	14
16	A Holling Predator-Prey Model with Handling and Searching Predators. SIAM Journal on Applied Mathematics, 2020, 80, 1778-1795.	1.8	4
17	Mathematical Parameters of the COVID-19 Epidemic in Brazil and Evaluation of the Impact of Different Public Health Measures. Biology, 2020, 9, 220.	2.8	21
18	A spatial model of honey bee colony collapse due to pesticide contamination of foraging bees. Journal of Mathematical Biology, 2020, 80, 2363-2393.	1.9	12

#	Article	IF	CITATIONS
19	Understanding Unreported Cases in the COVID-19 Epidemic Outbreak in Wuhan, China, and the Importance of Major Public Health Interventions. Biology, 2020, 9, 50.	2.8	192
20	Unreported Cases for Age Dependent COVID-19 Outbreak in Japan. Biology, 2020, 9, 132.	2.8	19
21	A COVID-19 epidemic model with latency period. Infectious Disease Modelling, 2020, 5, 323-337.	1.9	181
22	A cell–cell repulsion model on a hyperbolic Keller–Segel equation. Journal of Mathematical Biology, 2020, 80, 2257-2300.	1.9	9
23	SI epidemic model applied to COVID-19 data in mainland China. Royal Society Open Science, 2020, 7, 201878.	2.4	44
24	Spatial spread of epidemic diseases in geographical settings: Seasonal influenza epidemics in Puerto Rico. Discrete and Continuous Dynamical Systems - Series B, 2020, 25, 2185-2202.	0.9	5
25	Functional differential equation with infinite delay in a space of exponentially bounded and uniformly continuous functions. Discrete and Continuous Dynamical Systems - Series B, 2020, 25, 2271-2292.	0.9	2
26	Predicting the cumulative number of cases for the COVID-19 epidemic in China from early data. Mathematical Biosciences and Engineering, 2020, 17, 3040-3051.	1.9	108
27	Preface: Population dynamics in epidemiology and ecology. Discrete and Continuous Dynamical Systems - Series B, 2020, 25, â°-â±.	0.9	0
28	An Environmental Model of Honey Bee Colony Collapse Due to Pesticide Contamination. Bulletin of Mathematical Biology, 2019, 81, 4908-4931.	1.9	21
29	Monotone abstract non-densely defined Cauchy problems applied to age structured population dynamic models. Journal of Mathematical Analysis and Applications, 2019, 479, 450-481.	1.0	15
30	A center manifold for second order semilinear differential equations on the real line and applications to the existence of wave trains for the Gurtin–McCamy equation. Transactions of the American Mathematical Society, 2019, 372, 3487-3537.	0.9	5
31	Persistence of a normally hyperbolic manifold for a system of non densely defined Cauchy problems. Journal of Differential Equations, 2019, 267, 2950-3008.	2.2	2
32	On the Basic Reproduction Number of Reaction-Diffusion Epidemic Models. SIAM Journal on Applied Mathematics, 2019, 79, 284-304.	1.8	67
33	Direct and indirect P-glycoprotein transfers in MCF7 breast cancer cells. Journal of Theoretical Biology, 2019, 461, 239-253.	1.7	2
34	A system of state-dependent delay differential equation modelling forest growth II: Boundedness of solutions. Nonlinear Analysis: Real World Applications, 2018, 42, 334-352.	1.7	6
35	The parameter identification problem for SIR epidemic models: identifying unreported cases. Journal of Mathematical Biology, 2018, 77, 1629-1648.	1.9	53
36	Final size of a multi-group SIR epidemic model: Irreducible and non-irreducible modes of transmission. Mathematical Biosciences, 2018, 301, 59-67.	1.9	24

#	Article	IF	CITATIONS
37	Controllability with Positivity Constraints of the LotkaMcKendrick System. SIAM Journal on Control and Optimization, 2018, 56, 723-750.	2.1	7
38	Numerical simulations of a population dynamic model describing parasite destruction in a wild type pine forest. Ecological Complexity, 2018, 34, 147-160.	2.9	2
39	Age-Structured Models. Applied Mathematical Sciences (Switzerland), 2018, , 357-449.	0.8	1
40	On a vector-host epidemic model with spatial structure. Nonlinearity, 2018, 31, 5589-5614.	1.4	48
41	Theory and Applications of Abstract Semilinear Cauchy Problems. Applied Mathematical Sciences (Switzerland), 2018, , .	0.8	73
42	Functional Differential Equations. Applied Mathematical Sciences (Switzerland), 2018, , 309-356.	0.8	0
43	Integrated Semigroups and Cauchy Problems with Non-dense Domain. Applied Mathematical Sciences (Switzerland), 2018, , 101-164.	0.8	Ο
44	Turing and Turing–Hopf Bifurcations for a Reaction Diffusion Equation with Nonlocal Advection. Journal of Nonlinear Science, 2018, 28, 1959-1997.	2.1	17
45	A system of state-dependent delay differential equation modeling forest growth I: semiflow properties. Journal of Evolution Equations, 2018, 18, 1853-1888.	1.1	2
46	Modeling epidemic outbreaks in geographical regions: Seasonal influenza in Puerto Rico. Discrete and Continuous Dynamical Systems - Series S, 2018, .	1.1	1
47	Parabolic Equations. Applied Mathematical Sciences (Switzerland), 2018, , 451-521.	0.8	Ο
48	Semilinear Cauchy Problems with Non-dense Domain. Applied Mathematical Sciences (Switzerland), 2018, , 217-248.	0.8	9
49	Center Manifolds, Hopf Bifurcation, and Normal Forms. Applied Mathematical Sciences (Switzerland), 2018, , 249-308.	0.8	0
50	Spectral Theory for Linear Operators. Applied Mathematical Sciences (Switzerland), 2018, , 165-216.	0.8	0
51	Semigroups and Hille-Yosida Theorem. Applied Mathematical Sciences (Switzerland), 2018, , 57-99.	0.8	0
52	Competition for light in forest population dynamics: From computer simulator to mathematical model. Journal of Theoretical Biology, 2017, 419, 290-304.	1.7	14
53	Singular perturbation for an abstract non-densely defined Cauchy problem. Journal of Evolution Equations, 2017, 17, 1089-1128.	1.1	7
54	A Model for Transfer of P-Glycoproteins in MCF-7 Breast Cancer Cell Line with Multiple Transfer Rules. Bulletin of Mathematical Biology, 2017, 79, 2049-2067.	1.9	2

#	Article	IF	CITATIONS
55	Bogdanov–Takens bifurcation in a predator–prey model. Zeitschrift Fur Angewandte Mathematik Und Physik, 2016, 67, 1.	1.4	7
56	Final Size of an Epidemic for a Two-Group SIR Model. SIAM Journal on Applied Mathematics, 2016, 76, 2042-2059.	1.8	39
57	Normal Forms for an Age Structured Model. Journal of Dynamics and Differential Equations, 2016, 28, 733-761.	1.9	11
58	Persistence of Exponential Trichotomy for Linear Operators: A Lyapunov–Perron Approach. Journal of Dynamics and Differential Equations, 2016, 28, 93-126.	1.9	10
59	Hopf bifurcation in an age-structured population model with two delays. Communications on Pure and Applied Analysis, 2015, 14, 657-676.	0.8	8
60	A Finite-time Condition for Exponential Trichotomy in Infinite Dynamical Systems. Canadian Journal of Mathematics, 2015, 67, 1065-1090.	0.6	7
61	Hopf bifurcation for a spatially and age structured population dynamics model. Discrete and Continuous Dynamical Systems - Series B, 2015, 20, 1735-1757.	0.9	9
62	A Model of the 2014 Ebola Epidemic in West Africa with Contact Tracing. PLOS Currents, 2015, 7, .	1.4	44
63	Oscillations in age-structured models of consumer-resource mutualisms. Discrete and Continuous Dynamical Systems - Series B, 2015, 21, 537-555.	0.9	16
64	Susceptible-infectious-recovered models revisited: From the individual level to the population level. Mathematical Biosciences, 2014, 250, 26-40.	1.9	24
65	Normal forms for semilinear equations with non-dense domain with applications to age structured models. Journal of Differential Equations, 2014, 257, 921-1011.	2.2	30
66	Asymptotic Behavior of a Nonlocal Diffusive Logistic Equation. SIAM Journal on Mathematical Analysis, 2014, 46, 1731-1753.	1.9	7
67	Two-Group Infection Age Model Including an Application to Nosocomial Infection. SIAM Journal on Applied Mathematics, 2013, 73, 1058-1095.	1.8	58
68	Projectors on the Generalized Eigenspaces for Partial Differential Equations with Time Delay. Fields Institute Communications, 2013, , 353-390.	1.3	14
69	Hopf bifurcation for a size-structured model with resting phase. Discrete and Continuous Dynamical Systems, 2013, 33, 4891-4921.	0.9	7
70	Multiple travelling waves for an \$SI\$-epidemic model. Networks and Heterogeneous Media, 2013, 8, 171-190.	1.1	4
71	Different Modalities of Intercellular Membrane Exchanges Mediate Cell-to-cell P-glycoprotein Transfers in MCF-7 Breast Cancer Cells. Journal of Biological Chemistry, 2012, 287, 7374-7387.	3.4	114
72	Corrigendum to "Modelling the transmission dynamics of meticillin-resistant Staphylococcus aureus in Beijing Tongren hospital―[Journal of Hospital Infection 2011;79:302–308]. Journal of Hospital Infection, 2012, 81, 141.	2.9	0

#	Article	IF	CITATIONS
73	Qualitative analysis and travelling wave solutions for the SI model with vertical transmission. Communications on Pure and Applied Analysis, 2012, 11, 97-113.	0.8	40
74	Qualitative analysis of a model for co-culture of bacteria and amoebae. Mathematical Biosciences and Engineering, 2012, 9, 259-279.	1.9	0
75	Modelling the transmission dynamics of meticillin-resistant Staphylococcus aureus in Beijing Tongren hospital. Journal of Hospital Infection, 2011, 79, 302-308.	2.9	29
76	Hopf Bifurcation for a Maturity Structured Population Dynamic Model. Journal of Nonlinear Science, 2011, 21, 521-562.	2.1	7
77	Hopf bifurcation for non-densely defined Cauchy problems. Zeitschrift Fur Angewandte Mathematik Und Physik, 2011, 62, 191-222.	1.4	74
78	Consequences of cell-to-cell P-glycoprotein transfer on acquired multidrug resistance in breast cancer: a cell population dynamics model. Biology Direct, 2011, 6, 5.	4.6	54
79	Travelling wave solutions for an infection-age structured epidemic model with external supplies. Nonlinearity, 2011, 24, 2891-2911.	1.4	91
80	AN <i>IN VITRO</i> CELL POPULATION DYNAMICS MODEL INCORPORATING CELL SIZE, QUIESCENCE, AND CONTACT INHIBITION. Mathematical Models and Methods in Applied Sciences, 2011, 21, 871-892.	3.3	27
81	NONLINEAR BOUNDARY CONDITIONS DERIVED BY SINGULAR PERTUBATION IN AGE STRUCTURED POPULATION DYNAMICS MODEL. Journal of Applied Analysis and Computation, 2011, 1, 373-395.	0.5	4
82	Integrated semigroups and parabolic equations. Part I: linear perburbation of almost sectorial operators. Journal of Evolution Equations, 2010, 10, 263-291.	1.1	24
83	Travelling Wave Solutions in Multigroup Age-Structured Epidemic Models. Archive for Rational Mechanics and Analysis, 2010, 195, 311-331.	2.4	83
84	A spatio-temporal model to describe the spread of Salmonella within a laying flock. Journal of Theoretical Biology, 2010, 267, 595-604.	1.7	12
85	Projectors on the Generalized Eigenspaces for Neutral Functional Differential Equations in L ^p Spaces. Canadian Journal of Mathematics, 2010, 62, 74-93.	0.6	4
86	Sustained oscillations in an evolutionary epidemiological model of influenza A drift. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 466, 965-992.	2.1	21
87	A model for ovine brucellosis incorporating direct and indirect transmission. Journal of Biological Dynamics, 2010, 4, 2-11.	1.7	51
88	Preface. Journal of Biological Dynamics, 2010, 4, 1-1.	1.7	10
89	Lyapunov functional and global asymptotic stability for an infection-age model. Applicable Analysis, 2010, 89, 1109-1140.	1.3	247
90	Hopf bifurcation in a size-structured population dynamic model with random growth. Journal of Differential Equations, 2009, 247, 956-1000.	2.2	37

#	Article	IF	CITATIONS
91	Perturbation of a Globally Stable Steady State and Uniform Persistence. Journal of Dynamics and Differential Equations, 2009, 21, 1-20.	1.9	26
92	Analysis of a Model for Transfer Phenomena in Biological Populations. SIAM Journal on Applied Mathematics, 2009, 70, 40-62.	1.8	11
93	Center manifolds for semilinear equations with non-dense domain and applications to Hopf bifurcation in age structured models. Memoirs of the American Mathematical Society, 2009, 202, 0-0.	0.9	69
94	Essential growth rate for bounded linear perturbation of non-densely defined Cauchy problems. Journal of Mathematical Analysis and Applications, 2008, 341, 501-518.	1.0	69
95	Projectors on the generalized eigenspaces for functional differential equations using integrated semigroups. Journal of Differential Equations, 2008, 244, 1784-1809.	2.2	24
96	The Impact of Different Antibiotic Regimens on the Emergence of Antimicrobial-Resistant Bacteria. PLoS ONE, 2008, 3, e4036.	2.5	92
97	Effect of genetic resistance of the hen toSalmonellacarrier-state on incidence of bacterial contamination: synergy with vaccination. Veterinary Research, 2008, 39, 20.	3.0	11
98	Asymptotic Behavior in a Salmonella Infection Model. Mathematical Modelling of Natural Phenomena, 2007, 2, 1-25.	2.4	20
99	Modeling antibiotic resistance in hospitals: The impact of minimizing treatment duration. Journal of Theoretical Biology, 2007, 249, 487-499.	1.7	119
100	Influence of Routine Slaughtering on the Evolution of BSE: Example of British and French Slaughterings. Risk Analysis, 2007, 27, 1151-1167.	2.7	1
101	A model of Salmonella infection within industrial house hens. Journal of Theoretical Biology, 2006, 242, 755-763.	1.7	17
102	A model of antibiotic-resistant bacterial epidemics in hospitals. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13343-13348.	7.1	135
103	Global Attractors and Steady States for Uniformly Persistent Dynamical Systems. SIAM Journal on Mathematical Analysis, 2005, 37, 251-275.	1.9	419
104	Mutation and recombination in a model of phenotype evolution. Journal of Evolution Equations, 2002, 2, 21-39.	1.1	5
105	Global stability for differential equations with homogeneous nonlinearity and application to population dynamics. Discrete and Continuous Dynamical Systems - Series B, 2002, 2, 541-560.	0.9	2
106	Optimal Control of Harvesting in a Nonlinear Elliptic System Arising from Population Dynamics. Journal of Mathematical Analysis and Applications, 2001, 254, 571-586.	1.0	22
107	Existence of Periodic Solutions for a State Dependent Delay Differential Equation. Journal of Differential Equations, 2000, 165, 61-95.	2.2	27
108	A Uniqueness Result for Nontrivial Steady States of a Density-dependent Population Dynamics Model. Journal of Mathematical Analysis and Applications, 1999, 233, 148-168.	1.0	2

#	Article	IF	CITATIONS
109	Clarifying Predictions for COVID-19 from Testing Data: The Example of New York State. SSRN Electronic Journal, 0, , .	0.4	0
110	Asymptotic Behavior of a Nonlocal Advection System with Two Populations. Journal of Dynamics and Differential Equations, 0, , 1.	1.9	1
111	A robust phenomenological approach to investigate COVID-19 data for France. Mathematics in Applied Sciences and Engineering, 0, , 1-12.	0.8	13
112	SI Epidemic Model Applied to COVID-19 Data in Mainland China. SSRN Electronic Journal, 0, , .	0.4	0
113	What Can We Learn from COVID-19 Data by Using Epidemic Models with Unidentified Infectious Cases?. SSRN Electronic Journal, 0, , .	0.4	1
114	Predicting the Cumulative Number of Cases for the COVID-19 Epidemic in China from Early Data. SSRN Electronic Journal, 0, , .	0.4	8
115	Predicting the Number of Reported and Unreported Cases for the COVID-19 Epidemic in South Korea, Italy, France and Germany. SSRN Electronic Journal, 0, , .	0.4	14
116	Global Analysis of SARS-CoV-2 Mitigation Impact Reveals an Arabian Peninsula Cluster with High Infection Rates and Shared Indicators. SSRN Electronic Journal, 0, , .	0.4	0
117	Understanding Unreported Cases in the 2019-Ncov Epidemic Outbreak in Wuhan, China, and the Importance of Major Public Health Interventions (äˌå›½æ¦æ±‰æ–°å†ç–«æƒä¸æœªæŠ¥å'Šæœ‰ç—‡çжç—	ä¾;Çš"æ•	°é‡ <mark>åŠ</mark> å¬å.
118	Unreported Cases for Age Dependent COVID-19 Outbreak in Japan. SSRN Electronic Journal, 0, , .	0.4	0