
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4681847/publications.pdf Version: 2024-02-01

PONC XIANC

#	Article	IF	CITATIONS
1	A Review of Functional Binders in Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1802107.	19.5	324
2	Magnetic and Highly Recyclable Macroporous Carbon Nanotubes for Spilled Oil Sorption and Separation. ACS Applied Materials & amp; Interfaces, 2013, 5, 5845-5850.	8.0	310
3	One-dimensional van der Waals heterostructures. Science, 2020, 367, 537-542.	12.6	238
4	Ultrahigh-Aspect-Ratio Boron Nitride Nanosheets Leading to Superhigh In-Plane Thermal Conductivity of Foldable Heat Spreader. ACS Nano, 2021, 15, 6489-6498.	14.6	191
5	Superlow Thermal Conductivity 3D Carbon Nanotube Network for Thermoelectric Applications. ACS Applied Materials & Interfaces, 2012, 4, 81-86.	8.0	117
6	A Review of Advanced Energy Materials for Magnesium–Sulfur Batteries. Energy and Environmental Materials, 2018, 1, 100-112.	12.8	112
7	Multiscale Structural Modulation of Anisotropic Graphene Framework for Polymer Composites Achieving Highly Efficient Thermal Energy Management. Advanced Science, 2021, 8, 2003734.	11.2	108
8	Growth Deceleration of Vertically Aligned Carbon Nanotube Arrays:  Catalyst Deactivation or Feedstock Diffusion Controlled?. Journal of Physical Chemistry C, 2008, 112, 4892-4896.	3.1	102
9	Highâ€Performance Solutionâ€Processed Doubleâ€Walled Carbon Nanotube Transparent Electrode for Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1901204.	19.5	101
10	Soft and Selfâ€Adhesive Thermal Interface Materials Based on Vertically Aligned, Covalently Bonded Graphene Nanowalls for Efficient Microelectronic Cooling. Advanced Functional Materials, 2021, 31, 2104062.	14.9	95
11	The quantitative characterization of the concentration and dispersion of multi-walled carbon nanotubes in suspension by spectrophotometry. Nanotechnology, 2006, 17, 3692-3698.	2.6	94
12	Mechanism understanding for stripping electrochemistry of Li metal anode. SusMat, 2021, 1, 506-536.	14.9	93
13	Threeâ€Dimensional Carbon Nanotube Spongeâ€Array Architectures with High Energy Dissipation. Advanced Materials, 2014, 26, 1248-1253.	21.0	88
14	Synchronous Growth of Vertically Aligned Carbon Nanotubes with Pristine Stress in the Heterogeneous Catalysis Process. Journal of Physical Chemistry C, 2007, 111, 14638-14643.	3.1	86
15	Singleâ€Walled Carbon Nanotubes in Emerging Solar Cells: Synthesis and Electrode Applications. Advanced Energy Materials, 2019, 9, 1801312.	19.5	86
16	Acetylene-Accelerated Alcohol Catalytic Chemical Vapor Deposition Growth of Vertically Aligned Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2009, 113, 7511-7515.	3.1	84
17	High-performance zero-bias ultraviolet photodetector based on <i>p</i> -GaN/ <i>n</i> -ZnO heterojunction. Applied Physics Letters, 2014, 105, .	3.3	82
18	Tailoring Highly Ordered Graphene Framework in Epoxy for High-Performance Polymer-Based Heat Dissipation Plates. ACS Nano, 2021, 15, 12922-12934.	14.6	75

#	Article	IF	CITATIONS
19	Chemical vapor deposition growth of 5 mm hexagonal single-crystal graphene from ethanol. Carbon, 2015, 94, 810-815.	10.3	74
20	Encapsulation, Compensation, and Substitution of Catalyst Particles during Continuous Growth of Carbon Nanotubes. Advanced Materials, 2007, 19, 2360-2363.	21.0	72
21	Atomic-scale structural identification and evolution of Co-W-C ternary SWCNT catalytic nanoparticles: High-resolution STEM imaging on SiO ₂ . Science Advances, 2019, 5, eaat9459.	10.3	71
22	Achieving High Efficiency in Solution-Processed Perovskite Solar Cells Using C ₆₀ /C ₇₀ Mixed Fullerenes. ACS Applied Materials & Interfaces, 2018, 10, 39590-39598.	8.0	67
23	Equilibrium Chemical Vapor Deposition Growth of Bernal-Stacked Bilayer Graphene. ACS Nano, 2014, 8, 11631-11638.	14.6	65
24	The origin of sulfuryl-containing components in SEI from sulfate additives for stable cycling of ultrathin lithium metal anodes. Journal of Energy Chemistry, 2020, 47, 128-131.	12.9	63
25	Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts. Nanoscale, 2016, 8, 1608-1617.	5.6	61
26	Engineering superlyophobic surfaces on curable materials based on facile and inexpensive microfabrication. Journal of Materials Chemistry A, 2014, 2, 6952-6959.	10.3	60
27	Chirality specific and spatially uniform synthesis of single-walled carbon nanotubes from a sputtered Co–W bimetallic catalyst. Nanoscale, 2016, 8, 14523-14529.	5.6	58
28	Semiconducting carbon nanotubes as crystal growth templates and grain bridges in perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 12987-12992.	10.3	57
29	Wide Range Bandgap Modulation Based on ZnO-based Alloys and Fabrication of Solar Blind UV Detectors with High Rejection Ratio. ACS Applied Materials & Interfaces, 2014, 6, 14152-14158.	8.0	55
30	Large Area Growth of Aligned CNT Arrays on Spheres: Towards Large Scale and Continuous Production. Chemical Vapor Deposition, 2007, 13, 533-536.	1.3	54
31	Lightweight thermal interface materials based on hierarchically structured graphene paper with superior through-plane thermal conductivity. Chemical Engineering Journal, 2021, 419, 129609.	12.7	54
32	Diameter Modulation of Vertically Aligned Single-Walled Carbon Nanotubes. ACS Nano, 2012, 6, 7472-7479.	14.6	52
33	Controllable Expansion of Single-Walled Carbon Nanotube Dispersions Using Density Gradient Ultracentrifugation. Journal of Physical Chemistry C, 2010, 114, 4831-4834.	3.1	49
34	Carbon Nanotube Spongeâ€Array Tandem Composites with Extended Energy Absorption Range. Advanced Materials, 2013, 25, 1185-1191.	21.0	47
35	Mechanistic Insight into the Catalytic Oxidation of Cyclohexane over Carbon Nanotubes: Kinetic and In Situ Spectroscopic Evidence. Chemistry - A European Journal, 2013, 19, 9818-9824.	3.3	44
36	Effect of density and fibre orientation on the ablation behaviour of carbon-carbon composites. New Carbon Materials, 2010, 25, 161-167.	6.1	43

#	Article	IF	CITATIONS
37	Carbon Atoms in Ethanol Do Not Contribute Equally to Formation of Single-Walled Carbon Nanotubes. ACS Nano, 2013, 7, 3095-3103.	14.6	43
38	Zipping, entanglement, and the elastic modulus of aligned single-walled carbon nanotube films. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20426-20430.	7.1	40
39	Ultrafast Optoelectronic Processes in 1D Radial van der Waals Heterostructures: Carbon, Boron Nitride, and MoS ₂ Nanotubes with Coexisting Excitons and Highly Mobile Charges. Nano Letters, 2020, 20, 3560-3567.	9.1	40
40	The Insights of Lithium Metal Plating/Stripping in Porous Hosts: Progress and Perspectives. Energy Technology, 2021, 9, 2000700.	3.8	38
41	Enhanced In-Plane Thermal Conductance of Thin Films Composed of Coaxially Combined Single-Walled Carbon Nanotubes and Boron Nitride Nanotubes. ACS Nano, 2020, 14, 4298-4305.	14.6	36
42	Structure and optical properties of ternary alloy BeZnO and quaternary alloy BeMgZnO films growth by molecular beam epitaxy. Applied Surface Science, 2013, 274, 341-344.	6.1	35
43	Extended alcohol catalytic chemical vapor deposition for efficient growth of single-walled carbon nanotubes thinner than (6,5). Carbon, 2017, 119, 502-510.	10.3	35
44	Photoluminescence from Single-Walled MoS ₂ Nanotubes Coaxially Grown on Boron Nitride Nanotubes. ACS Nano, 2021, 15, 8418-8426.	14.6	35
45	One-dimensional van der Waals heterostructures: Growth mechanism and handedness correlation revealed by nondestructive TEM. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	35
46	One-Dimensional van der Waals Heterojunction Diode. ACS Nano, 2021, 15, 5600-5609.	14.6	34
47	Estimating the Raman Cross Sections of Single Carbon Nanotubes. ACS Nano, 2010, 4, 3466-3470.	14.6	33
48	Anisotropic electrical conduction of vertically-aligned single-walled carbon nanotube films. Carbon, 2011, 49, 1446-1452.	10.3	33
49	Quantitative study of bundle size effect on thermal conductivity of single-walled carbon nanotubes. Applied Physics Letters, 2018, 112, 191904.	3.3	32
50	Semiconductor nanochannels in metallic carbon nanotubes by thermomechanical chirality alteration. Science, 2021, 374, 1616-1620.	12.6	32
51	Solar-blind wurtzite MgZnO alloy films stabilized by Be doping. Journal Physics D: Applied Physics, 2013, 46, 245103.	2.8	31
52	Formation behavior of Be <i>x</i> Zn1â^' <i>x</i> O alloys grown by plasma-assisted molecular beam epitaxy. Applied Physics Letters, 2013, 102, .	3.3	31
53	In situ growth of carbon nanotubes on inorganic fibers with different surface properties. Materials Chemistry and Physics, 2008, 107, 317-321.	4.0	30
54	High-Precision Selective Deposition of Catalyst for Facile Localized Growth of Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2009, 131, 10344-10345.	13.7	30

#	Article	IF	CITATIONS
55	Tailoring Plasmon Resonances in Aluminium Nanoparticle Arrays Fabricated Using Anodic Aluminium Oxide. Advanced Optical Materials, 2015, 3, 248-256.	7.3	30
56	Temperature effect on the substrate selectivity of carbon nanotube growth in floating chemical vapor deposition. Nanotechnology, 2007, 18, 415703.	2.6	29
57	Heteronanotubes: Challenges and Opportunities. Small Science, 2021, 1, 2000039.	9.9	28
58	Elastic shape recovery of carbon nanotube sponges in liquid oil. Journal of Materials Chemistry, 2012, 22, 18300.	6.7	27
59	Temperature-dependent structural relaxation of BeZnO alloys. Applied Physics Letters, 2013, 103, .	3.3	27
60	Spray coating as a simple method to prepare catalyst for growth of diameter-tunable single-walled carbon nanotubes. Carbon, 2013, 64, 537-540.	10.3	25
61	Chemical vapor deposition growth of large single-crystal bernal-stacked bilayer graphene from ethanol. Carbon, 2016, 107, 852-856.	10.3	25
62	Vertically Aligned13C Single-Walled Carbon Nanotubes Synthesized by No-Flow Alcohol Chemical Vapor Deposition and their Root Growth Mechanism. Japanese Journal of Applied Physics, 2008, 47, 1971-1974.	1.5	24
63	Integrated random-aligned carbon nanotube layers: deformation mechanism under compression. Nanoscale, 2014, 6, 1748-1755.	5.6	24
64	Chemical Vapor Deposition Growth of Graphene and Related Materials. Journal of the Physical Society of Japan, 2015, 84, 121013.	1.6	24
65	Thermal Degradation of Single-Walled Carbon Nanotubes. Japanese Journal of Applied Physics, 2008, 47, 1994.	1.5	23
66	Large area growth of aligned CNT arrays on spheres: Cost performance and product control. Materials Letters, 2009, 63, 84-87.	2.6	23
67	Metallic Nanowire Coupled CsPbBr ₃ Quantum Dots Plasmonic Nanolaser. Advanced Functional Materials, 2021, 31, 2102375.	14.9	23
68	Nanotubeâ€Based 1D Heterostructures Coupled by van der Waals Forces. Small, 2021, 17, e2102585.	10.0	21
69	One-Dimensional van der Waals Heterostructures: A Perspective. ACS Nanoscience Au, 2022, 2, 3-11.	4.8	21
70	Decomposition of Ethanol and Dimethyl Ether during Chemical Vapor Deposition Synthesis of Single-Walled Carbon Nanotubes. Japanese Journal of Applied Physics, 2011, 50, 065101.	1.5	20
71	Fabrication, characterization, and high temperature surface enhanced Raman spectroscopic performance of SiO ₂ coated silver particles. Nanoscale, 2018, 10, 5449-5456.	5.6	20
72	Stabilization of p-type dopant nitrogen in BeZnO ternary alloy epitaxial thin films. Journal Physics D: Applied Physics, 2012, 45, 455101.	2.8	19

#	Article	IF	CITATIONS
73	Shrunk to femtolitre: Tuning high-throughput monodisperse water-in-oil droplet arrays for ultra-small micro-reactors. Applied Physics Letters, 2012, 101, 074108.	3.3	19
74	Diameter Controlled Chemical Vapor Deposition Synthesis of Single-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2012, 12, 370-376.	0.9	19
75	Thermal conductivity of one-dimensional carbon-boron nitride van der Waals heterostructure: A molecular dynamics study. International Journal of Heat and Mass Transfer, 2021, 180, 121773.	4.8	19
76	Heat Capacity, Thermal Conductivity, and Interface Resistance Extraction for Single-Walled Carbon Nanotube Films Using Frequency-Domain Thermoreflectance. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3, 1524-1532.	2.5	18
77	Intertube Excitonic Coupling in Nanotube Van der Waals Heterostructures. Advanced Functional Materials, 2022, 32, 2104969.	14.9	18
78	Room temperature-processed inverted organic solar cells using high working-pressure-sputtered ZnO films. Journal of Materials Chemistry A, 2016, 4, 18763-18768.	10.3	17
79	Digital Isotope Coding to Trace the Growth Process of Individual Single-Walled Carbon Nanotubes. ACS Nano, 2018, 12, 3994-4001.	14.6	17
80	Growth Mechanism and Internal Structure of Vertically Aligned Single-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2008, 8, 6093-6098.	0.9	16
81	ZnO film with ultra-low background electron concentration grown by plasma-assisted MBE using Mg film as the buffer layer. Materials Research Bulletin, 2012, 47, 2673-2675.	5.2	16
82	The role of Be incorporation in the modulation of the N doping ZnO. Journal of Alloys and Compounds, 2015, 622, 719-724.	5.5	16
83	Controlled Doping Engineering in 2D MoS ₂ Crystals toward Performance Augmentation of Optoelectronic Devices. ACS Applied Materials & Interfaces, 2021, 13, 31861-31869.	8.0	16
84	Atomic-Step-Induced Screw-Dislocation-Driven Spiral Growth of SnS. Chemistry of Materials, 2021, 33, 186-194.	6.7	16
85	Suppression of oxygen vacancies in Be alloyed ZnO. Journal of Alloys and Compounds, 2013, 577, 179-182.	5.5	15
86	Decomposition of Ethanol and Dimethyl Ether during Chemical Vapor Deposition Synthesis of Single-Walled Carbon Nanotubes. Japanese Journal of Applied Physics, 2011, 50, 065101.	1.5	15
87	Parametric Study of Alcohol Catalytic Chemical Vapor Deposition for Controlled Synthesis of Vertically Aligned Single-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2010, 10, 3901-3906.	0.9	14
88	Non-doped and unsorted single-walled carbon nanotubes as carrier-selective, transparent, and conductive electrode for perovskite solar cells. MRS Communications, 2018, 8, 1058-1063.	1.8	14
89	Multiâ€Functional MoO ₃ Doping of Carbonâ€Nanotube Top Electrodes for Highly Transparent and Efficient Semiâ€Transparent Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, .	3.7	14
90	Facile fabrication of all-SWNT field-effect transistors. Nano Research, 2011, 4, 580-588.	10.4	13

#	Article	IF	CITATIONS
91	Thermal Conductivity of Carbon Nanotubes and Assemblies. Advances in Heat Transfer, 2018, 50, 43-122.	0.9	13
92	Revisiting behaviour of monometallic catalysts in chemical vapour deposition synthesis of single-walled carbon nanotubes. Royal Society Open Science, 2018, 5, 180345.	2.4	13
93	Nanotube-based heterostructures for electrochemistry: A mini-review on lithium storage, hydrogen evolution and beyond. Journal of Energy Chemistry, 2022, 70, 630-642.	12.9	13
94	The modulation of grain boundary barrier in ZnMgO/ZnO heterostructure by surface polar liquid. Scientific Reports, 2014, 4, 4185.	3.3	12
95	Efficient growth of vertically-aligned single-walled carbon nanotubes combining two unfavorable synthesis conditions. Carbon, 2019, 146, 413-419.	10.3	12
96	One-step direct oxidation of fullerene-fused alkoxy ethers to ketones for evaporable fullerene derivatives. Communications Chemistry, 2021, 4, .	4.5	12
97	Measurement of in-plane sheet thermal conductance of single-walled carbon nanotube thin films by steady-state infrared thermography. Japanese Journal of Applied Physics, 2018, 57, 075101.	1.5	11
98	MoS2-carbon nanotube heterostructure as efficient hole transporters and conductors in perovskite solar cells. Applied Physics Express, 2020, 13, 075009.	2.4	11
99	Ni–Co-Based Nanowire Arrays with Hierarchical Core–Shell Structure Electrodes for High-Performance Supercapacitors. ACS Applied Energy Materials, 2020, 3, 7580-7587.	5.1	11
100	Non-catalytic heteroepitaxial growth of aligned, large-sized hexagonal boron nitride single-crystals on graphite. Nanoscale, 2020, 12, 10399-10406.	5.6	11
101	Controlled Removal of Surfactants from Doubleâ€Walled Carbon Nanotubes for Stronger pâ€Doping Effect and Its Demonstration in Perovskite Solar Cells. Small Methods, 2021, 5, e2100080.	8.6	11
102	Regrowth and catalytic etching of individual single-walled carbon nanotubes studied by isotope labeling and growth interruption. Carbon, 2019, 155, 635-642.	10.3	9
103	Atomic precision manufacturing of carbon nanotube—a perspective. International Journal of Extreme Manufacturing, 2022, 4, 023001.	12.7	9
104	Patterned Growth of High-Quality Single-Walled Carbon Nanotubes from Dip-Coated Catalyst. Japanese Journal of Applied Physics, 2010, 49, 02BA03.	1.5	8
105	Epitaxial nucleation of CVD bilayer graphene on copper. Nanoscale, 2016, 8, 20001-20007.	5.6	8
106	Morphology dependence of the thermal transport properties of single-walled carbon nanotube thin films. Nanotechnology, 2017, 28, 185701.	2.6	8
107	Load dependent frictional response of vertically aligned single-walled carbon nanotube films. Scripta Materialia, 2016, 125, 63-67.	5.2	7
108	Efficient Phosphorus Doping into the Surface Oxide Layers on TiN to Enhance Oxygen Reduction Reaction Activity in Acidic Media. ACS Applied Energy Materials, 2020, 3, 9866-9876.	5.1	7

#	Article	IF	CITATIONS
109	Zeolite-supported synthesis, solution dispersion, and optical characterizations of single-walled carbon nanotubes wrapped by boron nitride nanotubes. Journal of Applied Physics, 2021, 129, 015101.	2.5	7
110	SWCNT@BNNT With 1D Van Der Waals Heterostructure With a High Optical Damage Threshold for Laser Mode-Locking. Journal of Lightwave Technology, 2021, 39, 5875-5883.	4.6	7
111	Universal Map of Gas-Dependent Kinetic Selectivity in Carbon Nanotube Growth. ACS Nano, 2022, , .	14.6	7
112	Is it possible to enhance Raman scattering of single-walled carbon nanotubes by metal particles during chemical vapor deposition?. Carbon, 2014, 80, 311-317.	10.3	6
113	Grain boundary barrier modification due to coupling effect of crystal polar field and water molecular dipole in ZnO-based structures. Applied Physics Letters, 2014, 104, 242114.	3.3	5
114	A Comparison Between Reduced and Intentionally Oxidized Metal Catalysts for Growth of Singleâ€Walled Carbon Nanotubes. Physica Status Solidi (B): Basic Research, 2018, 255, 1800187.	1.5	5
115	Selfâ€Patterned CsPbBr ₃ Nanocrystal Based Plasmonic Hotâ€Carrier Photodetector at Telecommunications Wavelengths. Advanced Optical Materials, 2021, 9, 2101474.	7.3	5
116	Isotope-induced elastic scattering of optical phonons in individual suspended single-walled carbon nanotubes. Applied Physics Letters, 2011, 99, 093104.	3.3	4
117	Carbon Nanotubes: Threeâ€Ðimensional Carbon Nanotube Spongeâ€Array Architectures with High Energy Dissipation (Adv. Mater. 8/2014). Advanced Materials, 2014, 26, 1307-1307.	21.0	4
118	Nonhomogeneous morphology and the elastic modulus of aligned carbon nanotube films. Journal of Micromechanics and Microengineering, 2015, 25, 115023.	2.6	4
119	Ion Desorption from Single-Walled Carbon Nanotubes Induced by Soft X-ray Illumination. Japanese Journal of Applied Physics, 2010, 49, 105104.	1.5	3
120	Morphology and Optical Property of ZnO Nanostructures Grown by Solvothermal Method: Effect of the Solution Pretreatment. Journal of Nanomaterials, 2013, 2013, 1-4.	2.7	3
121	Growth of single-walled carbon nanotubes by alcohol chemical vapor deposition with water vapor addition: Narrowing the diameter and chiral angle distributions. Diamond and Related Materials, 2019, 96, 160-166.	3.9	3
122	Dry Drawability of Few-Walled Carbon Nanotubes Grown by Alcohol Chemical Vapor Deposition. Journal of Physical Chemistry C, 2020, 124, 17331-17339.	3.1	3
123	Formation of organic color centers in air-suspended carbon nanotubes using vapor-phase reaction. Nature Communications, 2022, 13, .	12.8	3
124	Simple Fabrication Technique for Field-Effect Transistor Array Using As-Grown Single-Walled Carbon Nanotubes. Japanese Journal of Applied Physics, 2011, 50, 04DN08.	1.5	2
125	Chemical Vapor Deposition Growth, Optical, and Thermal Characterization of Vertically Aligned Single-Walled Carbon Nanotubes. Journal of Heat Transfer, 2012, 134, .	2.1	2
126	Solar Cells: Singleâ€Walled Carbon Nanotubes in Emerging Solar Cells: Synthesis and Electrode Applications (Adv. Energy Mater. 23/2019). Advanced Energy Materials, 2019, 9, 1970091.	19.5	2

#	Article	IF	CITATIONS
127	Phenomenological model of thermal transport in carbon nanotube and hetero-nanotube films. Nanotechnology, 2021, 32, 205708.	2.6	2
128	Simple Fabrication Technique for Field-Effect Transistor Array Using As-Grown Single-Walled Carbon Nanotubes. Japanese Journal of Applied Physics, 2011, 50, 04DN08.	1.5	2
129	Twofold Effects of Zirconium Doping into TiN on Durability and Oxygen Reduction Reactivity in an Acidic Environment. Energy & Fuels, 2022, 36, 539-547.	5.1	2
130	Building blocks for one-dimensional van der Waals heterostructures. , 2022, 1, 20220016.		2
131	Feedstock Diffusion and Decomposition in Aligned Carbon Nanotube Arrays. Journal of Heat Transfer, 2012, 134, .	2.1	1
132	Facile and versatile replication of high-performance superlyophobic surfaces on curable substrates using elastomer molds. , 2013, , .		1
133	Nanotubeâ€Based 1D Heterostructures Coupled by van der Waals Forces (Small 38/2021). Small, 2021, 17, 2170196.	10.0	1
134	Thermal Conductivity Measurement of Vertically Aligned Single-Walled Carbon Nanotubes Utilizing Temperature Dependence of Raman Scattering. , 2011, , .		1
135	Intertube Excitonic Coupling in Nanotube Van der Waals Heterostructures (Adv. Funct. Mater.) Tj ETQq1 1 0.784	4314 rgBT 14.9	/Oyerlock 1
136	Selfâ€Patterned CsPbBr ₃ Nanocrystal Based Plasmonic Hotâ€Carrier Photodetector at Telecommunications Wavelengths (Advanced Optical Materials 24/2021). Advanced Optical Materials, 2021, 9, .	7.3	1
137	Investigating the Growth Process of Vertically Aligned Single-Walled Carbon Nanotubes Synthesized from Alcohol. Materials Research Society Symposia Proceedings, 2007, 1057, 1.	0.1	0
138	CVD Growth, Optical and Thermal Characterization of Vertically-Aligned Single-Walled Carbon Nanotubes. , 2009, , .		0
139	Structure and optical property of Be _x Zn _{1â€x} O nanorod arrays. Crystal Research and Technology, 2013, 48, 599-602.	1.3	0
140	Heat Conduction Characteristics of Vertically Aligned Single-Walled Carbon Nanotubes Measured by Raman Spectroscopy. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2013, 79, 185-198.	0.2	0
141	Feedstock Diffusion and Decomposition in Aligned Carbon Nanotube Arrays. , 2009, , .		0
142	M1-5 Optimization of catalyst deposition by spin-coating for synthesis of vertically-aligned single-walled carbon nanotube arrays (M1 Fabrication Technology and NEMS/MEMS Material). The Proceedings of the Symposium on Micro-Nano Science and Technology, 2009, 2009.1, 23-24.	0.0	0
143	MNM-4A-2 Diameter controlled CVD synthesis of single-walled carbon nanotubes. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2010, 2010.2, 173-174.	0.0	0
144	Tuning Microstructure and Nanostructure of Single-Walled Carbon Nanotubes for Solar Cells Applications. , 2014, , .		0

#	Article	IF	CITATIONS
145	(Invited) Kinetic Selectivity of Chemical Vapor Deposition Growth of Carbon Nanotubes. ECS Meeting Abstracts, 2022, MA2022-01, 767-767.	0.0	0