Jennifer Maning Do

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4680359/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	β-Arrestin2 Improves Post–Myocardial Infarction Heart Failure via Sarco(endo)plasmic Reticulum Ca ²⁺ -ATPase–Dependent Positive Inotropy in Cardiomyocytes. Hypertension, 2017, 70, 972-981.	2.7	74
2	Biased Agonism/Antagonism of Cardiovascular GPCRs for Heart Failure Therapy. International Review of Cell and Molecular Biology, 2018, 339, 41-61.	3.2	34
3	Deletion of Osteopontin Enhances β2-Adrenergic Receptor-Dependent Anti-Fibrotic Signaling in Cardiomyocytes. International Journal of Molecular Sciences, 2019, 20, 1396.	4.1	32
4	Biased agonism/antagonism at the AngII-AT1 receptor: Implications for adrenal aldosterone production and cardiovascular therapy. Pharmacological Research, 2017, 125, 14-20.	7.1	30
5	Chemically synthesized Secoisolariciresinol diglucoside (LGM2605) improves mitochondrial function in cardiac myocytes and alleviates septic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2019, 127, 232-245.	1.9	29
6	Novel Insights into the Crosstalk between Mineralocorticoid Receptor and G Protein-Coupled Receptors in Heart Adverse Remodeling and Disease. International Journal of Molecular Sciences, 2018, 19, 3764.	4.1	28
7	Antagonistic Roles of GRK2 and GRK5 in Cardiac Aldosterone Signaling Reveal GRK5-Mediated Cardioprotection via Mineralocorticoid Receptor Inhibition. International Journal of Molecular Sciences, 2020, 21, 2868.	4.1	21
8	Not all arrestins are created equal: Therapeutic implications of the functional diversity of the Î ² arrestins in the heart. World Journal of Cardiology, 2019, 11, 47-56.	1.5	20
9	Effect of Gender on Prognosis in Patients With Takotsubo Syndrome (from a Nationwide Perspective). American Journal of Cardiology, 2022, 162, 6-12.	1.6	11
10	Racial disparities in the utilization and in-hospital outcomes of percutaneous left atrial appendage closure among patients with atrial fibrillation. Heart Rhythm, 2021, 18, 987-994.	0.7	10
11	Sustained GRK2-dependent CREB activation is essential for α2-adrenergic receptor-induced PC12 neuronal differentiation. Cellular Signalling, 2020, 66, 109446.	3.6	6
12	In-Hospital Outcomes in Patients With a History of Malignancy Undergoing Transcatheter Aortic Valve Implantation. American Journal of Cardiology, 2021, 142, 109-115.	1.6	6
13	Co-IP assays for measuring GPCR–arrestin interactions. Methods in Cell Biology, 2019, 149, 205-213.	1.1	4
14	Bicaval vs biatrial anastomosis techniques in orthotopic heart transplantation: An updated analysis of the UNOS database. Journal of Cardiac Surgery, 2020, 35, 2242-2247.	0.7	4
15	Assessing in-hospital cardiovascular, thrombotic and bleeding outcomes in patients with chronic liver disease undergoing left ventricular assist device implantation. Thrombosis Research, 2021, 202, 184-190.	1.7	4
16	Food and Drug Administration Malfunction Recalls of Left Ventricular Assist Devices. ASAIO Journal, 2020, 66, 739-745.	1.6	3
17	Evaluating the impact of chronic obstructive pulmonary disease on inâ€hospital outcomes following left ventricular assist device implantation. Journal of Cardiac Surgery, 2020, 35, 3374-3380.	0.7	1
18	Comparison of household income in in-hospital outcomes after implantation of left ventricular assist device. International Journal of Artificial Organs, 2022, 45, 379-387.	1.4	1

#	Article	IF	CITATIONS
19	Abstract 15717: Impact of Mechanical Circulatory Support on Outcomes and In-hospital Mortality of Peripartum Cardiomyopathy Patients With Cardiogenic Shock: An Analysis of the Nis Database. Circulation, 2020, 142, .	1.6	1
20	Bilateral Percutaneous Pulmonary Valves for Severe Pulmonary Regurgitation in a Patient with Prior Valvotomy. Case, 2021, 5, 78-80.	0.3	0
21	GRK5â€mediated inhibitory phosphorylation is essential for inverse agonism at the cardiac mineralocorticoid receptor. FASEB Journal, 2019, 33, 676.8.	0.5	0