Dagmar Zweytick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4677590/publications.pdf

Version: 2024-02-01

414414 394421 2,490 33 19 32 citations g-index h-index papers 33 33 33 3546 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Membrane-active host defense peptides $\hat{a}\in$ Challenges and perspectives for the development of novel anticancer drugs. Chemistry and Physics of Lipids, 2011, 164, 766-781.	3.2	359
2	Identification and Characterization of Major Lipid Particle Proteins of the Yeast <i>Saccharomyces cerevisiae</i> . Journal of Bacteriology, 1999, 181, 6441-6448.	2.2	288
3	Intracellular lipid particles of eukaryotic cells. BBA - Biomembranes, 2000, 1469, 101-120.	8.0	283
4	Small cationic antimicrobial peptides delocalize peripheral membrane proteins. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1409-18.	7.1	283
5	In search of a novel target â€" Phosphatidylserine exposed by non-apoptotic tumor cells and metastases of malignancies with poor treatment efficacy. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2638-2645.	2.6	269
6	Contribution of Are1p and Are2p to steryl ester synthesis in the yeast Saccharomyces cerevisiae. FEBS Journal, 2000, 267, 1075-1082.	0.2	158
7	Structural and Biochemical Properties of Lipid Particles from the Yeast Saccharomyces cerevisiae. Journal of Biological Chemistry, 2008, 283, 17065-17074.	3.4	147
8	Biochemical characterization and subcellular localization of the sterol C-24(28) reductase, Erg4p, from the yeastSaccharomyces cerevisiae. FEBS Letters, 2000, 470, 83-87.	2.8	75
9	Synthesis and Intracellular Transport of Aminoglycerophospholipids in Permeabilized Cells of the Yeast, Saccharomyces cerevisiae. Journal of Biological Chemistry, 1995, 270, 29836-29842.	3.4	71
10	Calorimetric, X-Ray Diffraction, and Spectroscopic Studies of the Thermotropic Phase Behavior and Organization of Tetramyristoyl Cardiolipin Membranes. Biophysical Journal, 2007, 92, 3166-3177.	0.5	68
11	Influence of squalene on lipid particle/droplet and membrane organization in the yeast Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 647-653.	2.4	59
12	Studies on Lactoferricin-derived Escherichia coli Membrane-active Peptides Reveal Differences in the Mechanism of N-Acylated Versus Nonacylated Peptides. Journal of Biological Chemistry, 2011, 286, 21266-21276.	3.4	56
13	Targeting of proteins involved in sterol biosynthesis to lipid particles of the yeast Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1663, 9-13.	2.6	49
14	Influence of N-acylation of a peptide derived from human lactoferricin on membrane selectivity. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 1426-1435.	2.6	45
15	Interaction of two antitumor peptides with membrane lipids $\hat{a} \in \text{``Influence of phosphatidylserine and }$ cholesterol on specificity for melanoma cells. PLoS ONE, 2019, 14, e0211187.	2.5	42
16	Human lactoferricin derived di-peptides deploying loop structures induce apoptosis specifically in cancer cells through targeting membranous phosphatidylserine. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2918-2931.	2.6	41
17	Membrane curvature stress and antibacterial activity of lactoferricin derivatives. Biochemical and Biophysical Research Communications, 2008, 369, 395-400.	2.1	39
18	Killing of melanoma cells and their metastases by human lactoferricin derivatives requires interaction with the cancer marker phosphatidylserine. BioMetals, 2014, 27, 981-997.	4.1	37

#	Article	IF	CITATIONS
19	N-acylated Peptides Derived from Human Lactoferricin Perturb Organization of Cardiolipin and Phosphatidylethanolamine in Cell Membranes and Induce Defects in Escherichia coli Cell Division. PLoS ONE, 2014, 9, e90228.	2.5	35
20	<i>In vitro</i> and <i>in vivo</i> cytotoxic activity of human lactoferricin derived antitumor peptide R-DIM-P-LF11-334 on human malignant melanoma. Oncotarget, 2017, 8, 71817-71832.	1.8	12
21	Human melanoma brain metastases cell line MUG-Mel1, isolated clones and their detailed characterization. Scientific Reports, 2019, 9, 4096.	3.3	11
22	Effect of L- to D-Amino Acid Substitution on Stability and Activity of Antitumor Peptide RDP215 against Human Melanoma and Glioblastoma. International Journal of Molecular Sciences, 2021, 22, 8469.	4.1	11
23	Extended Ultrastructural Characterization of Chordoma Cells: The Link to New Therapeutic Options. PLoS ONE, 2014, 9, e114251.	2.5	11
24	MUG-Mel2, a novel highly pigmented and well characterized NRAS mutated human melanoma cell line. Scientific Reports, 2017, 7, 2098.	3.3	10
25	Effective Antimicrobial and Anti-Endotoxin Activity of Cationic Peptides Based on Lactoferricin: A Biophysical and Microbiological Study. Anti-Infective Agents in Medicinal Chemistry, 2010, 9, 9-22.	0.6	9
26	Design of human lactoferricin derived antitumor peptides-activity and specificity against malignant melanoma in 2D and 3D model studies. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183264.	2.6	8
27	Cytokine-Mediated Inflammation in the Oral Cavity and Its Effect on Lipid Nanocarriers. Nanomaterials, 2021, 11, 1330.	4.1	5
28	LTX-315 $\hat{a}\in$ a promising novel antitumor peptide and immunotherapeutic agent. Cell Stress, 2019, 3, 328-329.	3.2	4
29	MUG Mel3 Cell Lines Reflect Heterogeneity in Melanoma and Represent a Robust Model for Melanoma in Pregnancy. International Journal of Molecular Sciences, 2021, 22, 11318.	4.1	2
30	Phosphatidylserine Selective Peptides As Novel Anti-cancer Agents. Biophysical Journal, 2009, 96, 157a.	0.5	1
31	Structural Aspects of the Interaction of Nk-2 Derived Peptides with Cancer Cells. Biophysical Journal, 2010, 98, 277a.	0.5	1
32	Interaction of an Antitumor Peptide with Lipids of the Cancer Plasma Membrane - Formation of Membrane Domains and Influence of Cholesterol. Biophysical Journal, 2014, 106, 88a.	0.5	1
33	Editorial preface for SI Membrane Effectors and Actuators. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183331.	2.6	0