C Shad Thaxton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4677027/publications.pdf

Version: 2024-02-01

55 papers

8,373 citations

30 h-index 54 g-index

62 all docs

62 docs citations

62 times ranked 11336 citing authors

#	Article	IF	CITATIONS
1	Highly sensitive and ultra-rapid antigen-based detection of SARS-CoV-2 using nanomechanical sensor platform. Biosensors and Bioelectronics, 2022, 195, 113647.	10.1	34
2	Targeted reduction of cholesterol uptake in cholesterol-addicted lymphoma cells blocks turnover of oxidized lipids to cause ferroptosis. Journal of Biological Chemistry, 2021, 296, 100100.	3.4	23
3	Synthetic high-density lipoprotein nanoparticles: Good things in small packages. Ocular Surface, 2021, 21, 19-26.	4.4	7
4	HDL Nanoparticles Have Wound Healing and Antiâ€Inflammatory Properties and Can Topically Deliver miRNAs. Advanced Therapeutics, 2020, 3, 2000138.	3.2	10
5	Interparticle Molecular Exchange of Surface Chemical Components of Native High-Density Lipoproteins to Complementary Nanoparticle Scaffolds. ACS Sensors, 2020, 5, 3019-3024.	7.8	O
6	Prostate cancer extracellular vesicles mediate intercellular communication with bone marrow cells and promote metastasis in a cholesterolâ€dependent manner. Journal of Extracellular Vesicles, 2020, 10, e12042.	12.2	40
7	Biomimetic Magnetic Nanostructures: A Theranostic Platform Targeting Lipid Metabolism and Immune Response in Lymphoma. ACS Nano, 2019, 13, 10301-10311.	14.6	14
8	An update on synthetic high-density lipoprotein-like nanoparticles for cancer therapy. Expert Review of Anticancer Therapy, 2019, 19, 515-528.	2.4	12
9	Supramolecular Assembly of High-Density Lipoprotein Mimetic Nanoparticles Using Lipid-Conjugated Core Scaffolds. Journal of the American Chemical Society, 2019, 141, 9753-9757.	13.7	23
10	Nitric Oxide-Delivering High-Density Lipoprotein-like Nanoparticles as a Biomimetic Nanotherapy for Vascular Diseases. ACS Applied Materials & Samp; Interfaces, 2018, 10, 6904-6916.	8.0	42
11	Small interfering $\langle scp \rangle RNA \langle scp \rangle$ s based on huntingtin trinucleotide repeats are highly toxic to cancer cells. EMBO Reports, 2018, 19, .	4.5	32
12	HDL nanoparticles targeting sonic hedgehog subtype medulloblastoma. Scientific Reports, 2018, 8, 1211.	3.3	30
13	Scavenger Receptor Type B1 and Lipoprotein Nanoparticle Inhibit Myeloid-Derived Suppressor Cells. Molecular Cancer Therapeutics, 2018, 17, 686-697.	4.1	56
14	HDL and the golden key to cancer immunity?. Oncoscience, 2018, 5, 164-166.	2.2	4
15	High-Density Lipoprotein-like Magnetic Nanostructures (HDL-MNS): Theranostic Agents for Cardiovascular Disease. Chemistry of Materials, 2017, 29, 2276-2282.	6.7	38
16	HDL efflux capacity, HDL particle size, and high-risk carotid atherosclerosis in a cohort of asymptomatic older adults: the Chicago Healthy Aging Study. Journal of Lipid Research, 2017, 58, 600-606.	4.2	65
17	Molecular Dynamics Simulation and Experimental Studies of Gold Nanoparticle Templated HDL-like Nanoparticles for Cholesterol Metabolism Therapeutics. ACS Applied Materials & Samp; Interfaces, 2017, 9, 1247-1254.	8.0	14
18	Rational Targeting of Cellular Cholesterol in Diffuse Large B-Cell Lymphoma (DLBCL) Enabled by Functional Lipoprotein Nanoparticles: A Therapeutic Strategy Dependent on Cell of Origin. Molecular Pharmaceutics, 2017, 14, 4042-4051.	4.6	33

#	Article	lF	CITATIONS
19	Engineered nanoparticles for the detection, treatment and prevention of atherosclerosis: how close are we?. Drug Discovery Today, 2017, 22, 1438-1446.	6.4	19
20	Pre-metastatic cancer exosomes induce immune surveillance by patrolling monocytes at the metastatic niche. Nature Communications, 2017, 8, 1319.	12.8	237
21	Induction of DISE in ovarian cancer cells <i>in vivo</i> . Oncotarget, 2017, 8, 84643-84658.	1.8	31
22	Synthetic high-density lipoproteins as targeted monotherapy for chronic lymphocytic leukemia. Oncotarget, 2017, 8, 11219-11227.	1.8	21
23	Synthetic high-density lipoprotein-like nanoparticles potently inhibit cell signaling and production of inflammatory mediators induced by lipopolysaccharide binding Toll-like receptor 4. Biomaterials, 2016, 100, 67-75.	11.4	62
24	Lipoproteins and lipoprotein mimetics for imaging and drug delivery. Advanced Drug Delivery Reviews, 2016, 106, 116-131.	13.7	115
25	Circulating microRNA signature for the diagnosis of very high-risk prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10655-10660.	7.1	127
26	Mosaic Interdigitated Structure in Nanoparticleâ€Templated Phospholipid Bilayer Supports Partial Lipidation of Apolipoprotein Aâ€I. Particle and Particle Systems Characterization, 2016, 33, 300-305.	2.3	3
27	Properties of Native Highâ€Density Lipoproteins Inspire Synthesis of Actively Targeted In Vivo siRNA Delivery Vehicles. Advanced Functional Materials, 2016, 26, 7824-7835.	14.9	44
28	Pathways for Modulating Exosome Lipids Identified By High-Density Lipoprotein-Like Nanoparticle Binding to Scavenger Receptor Type B-1. Scientific Reports, 2016, 6, 22915.	3.3	20
29	High-density lipoproteins for therapeutic delivery systems. Journal of Materials Chemistry B, 2016, 4, 188-197.	5.8	24
30	Nanoparticle Targeting and Cholesterol Flux Through Scavenger Receptor Type B-1 Inhibits Cellular Exosome Uptake. Scientific Reports, 2015, 5, 15724.	3.3	69
31	Mesophase in a Thiolate-Containing Diacyl Phospholipid Self-Assembled Monolayer. Langmuir, 2015, 31, 3232-3241.	3.5	9
32	Robust passive and active efflux of cellular cholesterol to a designer functional mimic of high density lipoprotein. Journal of Lipid Research, 2015, 56, 972-985.	4.2	39
33	Synthetic High-Density Lipoprotein-Like Nanoparticles as Cancer Therapy. Cancer Treatment and Research, 2015, 166, 129-150.	0.5	53
34	NanoFlares for the detection, isolation, and culture of live tumor cells from human blood. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17104-17109.	7.1	197
35	Highâ€Density Lipoprotein Nanoparticles Deliver RNAi to Endothelial Cells to Inhibit Angiogenesis. Particle and Particle Systems Characterization, 2014, 31, 1141-1150.	2.3	31
36	Templated high density lipoprotein nanoparticles as potential therapies and for molecular delivery. Advanced Drug Delivery Reviews, 2013, 65, 649-662.	13.7	98

3

#	Article	IF	Citations
37	Biomimetic, synthetic HDL nanostructures for lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2511-2516.	7.1	112
38	Tailoring of Biomimetic High-Density Lipoprotein Nanostructures Changes Cholesterol Binding and Efflux. ACS Nano, 2012, 6, 276-285.	14.6	66
39	Scanometric MicroRNA Array Profiling of Prostate Cancer Markers Using Spherical Nucleic Acid–Gold Nanoparticle Conjugates. Analytical Chemistry, 2012, 84, 4153-4160.	6.5	147
40	Biomimetic High Density Lipoprotein Nanoparticles For Nucleic Acid Delivery. Nano Letters, 2011, 11, 1208-1214.	9.1	115
41	Hybridizationâ€Induced "Offâ€On― ¹⁹ Fâ€NMR Signal Probe Release from DNAâ€Functionalized Nanoparticles. Small, 2011, 7, 1977-1981.	Gold Fo.d	21
42	Transfection of pancreatic islets using polyvalent DNA-functionalized gold nanoparticles. Surgery, 2010, 148, 335-345.	1.9	38
43	Nanotechnology for synthetic high-density lipoproteins. Trends in Molecular Medicine, 2010, 16, 553-560.	6.7	27
44	The Bioactive Polyphenol Curcumin (diferuloylmethane) In Human Apolipoprotein A-1 Nanodisks Enhances Apoptosis and G1 Cell Cycle Arrest In Mantle Cell Lymphoma Compared with Free Curcumin. Blood, 2010, 116, 3934-3934.	1.4	O
45	Templated Spherical High Density Lipoprotein Nanoparticles. Journal of the American Chemical Society, 2009, 131, 1384-1385.	13.7	114
46	Nanoparticle-based bio-barcode assay redefines "undetectable―PSA and biochemical recurrence after radical prostatectomy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18437-18442.	7.1	378
47	Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation. Science, 2006, 312, 1027-1030.	12.6	1,838
48	Multifunctional Polymeric Nanoparticles from Diverse Bioactive Agents. Journal of the American Chemical Society, 2006, 128, 4168-4169.	13.7	97
49	Gold nanoparticle probes for the detection of nucleic acid targets. Clinica Chimica Acta, 2006, 363, 120-126.	1.1	321
50	Plasmon coupling measures up. Nature Biotechnology, 2005, 23, 681-682.	17.5	28
51	Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2273-2276.	7.1	790
52	A Bio-Bar-Code Assay Based upon Dithiothreitol-Induced Oligonucleotide Release. Analytical Chemistry, 2005, 77, 8174-8178.	6.5	168
53	Nanostructures in biodefense and molecular diagnostics. Expert Review of Molecular Diagnostics, 2004, 4, 749-751.	3.1	17
54	Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins. Science, 2003, 301, 1884-1886.	12.6	2,354

#	Article	IF	CITATIONS
55	PCR-like sensitivity for proteins with bio-bar-code amplification. Discovery Medicine, 2003, 3, 58-60.	0.5	4