Carlos Alonso-Alvarez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4676997/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An ageâ€related decline in the expression of a red carotenoidâ€based ornament in wild birds. Evolution; International Journal of Organic Evolution, 2021, 75, 3142-3153.	2.3	7
2	Testing the carotenoid-based sexual signalling mechanism by altering <i>CYP2J19</i> gene expression and colour in a bird species. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201067.	2.6	12
3	Testing the sharedâ€pathway hypothesis in the carotenoidâ€based coloration of red crossbills. Evolution; International Journal of Organic Evolution, 2020, 74, 2348-2364.	2.3	22
4	Life-long testosterone and antiandrogen treatments affect the survival and reproduction of captive male red-legged partridges (Alectoris rufa). Behavioral Ecology and Sociobiology, 2020, 74, 1.	1.4	6
5	Oxidative Stress Experienced during Early Development Influences the Offspring Phenotype. American Naturalist, 2020, 196, 704-716.	2.1	14
6	Carbon δ13C Isotopic Marker Values Correlate with Carotenoid-Based Bill Colouration in Adult Yellow-Legged Gulls Larus michahellis. Ardeola, 2020, 67, 325.	0.7	0
7	Carotenoid-based coloration predicts both longevity and lifetime fecundity in male birds, but testosterone disrupts signal reliability. PLoS ONE, 2019, 14, e0221436.	2.5	15
8	Dietary canthaxanthin reduces xanthophyll uptake and red coloration in adult red-legged partridges. Journal of Experimental Biology, 2018, 221, .	1.7	6
9	The fractal dimension of a conspicuous ornament varies with mating status and shows assortative mating in wild red-legged partridges (Alectoris rufa). Die Naturwissenschaften, 2018, 105, 45.	1.6	3
10	Adaptive downregulation of pheomelaninâ€related <i>Slc7a11</i> gene expression by environmentally induced oxidative stress. Molecular Ecology, 2017, 26, 849-858.	3.9	19
11	Variation in Reproductive Success Across Captive Populations: Methodological Differences, Potential Biases and Opportunities. Ethology, 2017, 123, 1-29.	1.1	60
12	Mitochondria-targeted molecules determine the redness of the zebra finch bill. Biology Letters, 2017, 13, 20170455.	2.3	25
13	Individual quality as sensitivity to cysteine availability in a melanin-based honest signalling system. Journal of Experimental Biology, 2017, 220, 2825-2833.	1.7	13
14	The Oxidative Cost of Reproduction: Theoretical Questions and Alternative Mechanisms. BioScience, 2017, 67, 258-270.	4.9	33
15	The oxidative cost of reproduction depends on early development oxidative stress and sex in a bird species. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160842.	2.6	22
16	Specific carotenoid pigments in the diet and a bit of oxidative stress in the recipe for producing red carotenoid-based signals. PeerJ, 2016, 4, e2237.	2.0	29
17	Lowâ€quality birds do not display highâ€quality signals: The cysteineâ€pheomelanin mechanism of honesty. Evolution; International Journal of Organic Evolution, 2015, 69, 26-38.	2.3	32
18	Early development conditions and the oxidative cost of social context in adulthood: an experimental study in birds. Frontiers in Ecology and Evolution, 2015, 3, .	2.2	6

#	Article	IF	CITATIONS
19	The Level of an Intracellular Antioxidant during Development Determines the Adult Phenotype in a Bird Species: A Potential Organizer Role for Glutathione. American Naturalist, 2015, 185, 390-405.	2.1	36
20	Measuring Oxidative Stress: The Confounding Effect of Lipid Concentration in Measures of Lipid Peroxidation. Physiological and Biochemical Zoology, 2015, 88, 345-351.	1.5	77
21	Nest-dwelling ectoparasites reduce antioxidant defences in females and nestlings of a passerine: a field experiment. Oecologia, 2015, 179, 29-41.	2.0	32
22	Accumulation of dietary carotenoids, retinoids and tocopherol in the internal tissues of a bird: a hypothesis for the cost of producing colored ornaments. Oecologia, 2015, 177, 259-271.	2.0	18
23	Covariation in Oxidative Stress Markers in the Blood of Nestling and Adult Birds. Physiological and Biochemical Zoology, 2014, 87, 353-362.	1.5	49
24	Black bib size is associated with feather content of pheomelanin in male house sparrows. Pigment Cell and Melanoma Research, 2014, 27, 1159-1161.	3.3	7
25	Buthionine sulfoximine diverts the melanogenesis pathway toward the production of more soluble and degradable pigments. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2150-2154.	2.2	7
26	Astaxanthin and papilioerythrinone in the skin of birds: a chromatic convergence of two metabolic routes with different precursors?. Die Naturwissenschaften, 2014, 101, 407-416.	1.6	17
27	Free and Esterified Carotenoids in Ornaments of an Avian Species: The Relationship to Color Expression and Sources of Variability. Physiological and Biochemical Zoology, 2013, 86, 483-498.	1.5	30
28	Relationships between Hair Melanization, Glutathione Levels, and Senescence in Wild Boars. Physiological and Biochemical Zoology, 2012, 85, 332-347.	1.5	21
29	Adjustment of female reproductive investment according to male carotenoid-based ornamentation in a gallinaceous bird. Behavioral Ecology and Sociobiology, 2012, 66, 731-742.	1.4	45
30	Contrasted effects of an oxidative challenge and α-melanocyte-stimulating hormone on cellular immune responsiveness: an experiment with red-legged partridges Alectoris rufa. Oecologia, 2012, 169, 385-394.	2.0	4
31	Benefits and costs of parental care. , 2012, , 40-61.		100
32	Free Radical Exposure Creates Paler Carotenoid-Based Ornaments: A Possible Interaction in the Expression of Black and Red Traits. PLoS ONE, 2011, 6, e19403.	2.5	66
33	Thrifty development: early-life diet restriction reduces oxidative damage during later growth. Functional Ecology, 2011, 25, 1144-1153.	3.6	47
34	Natural radioactivity can explain clinal variation in the expression of melanin-based traits. Evolutionary Ecology, 2011, 25, 1197-1203.	1.2	5
35	Identification of carotenoid pigments and their fatty acid esters in an avian integument combining HPLC–DAD and LC–MS analyses. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 341-348.	2.3	37
36	Yolk testosterone reduces oxidative damages during postnatal development. Biology Letters, 2011, 7, 93-95.	2.3	35

#	Article	IF	CITATIONS
37	GENETIC CORRELATION BETWEEN RESISTANCE TO OXIDATIVE STRESS AND REPRODUCTIVE LIFE SPAN IN A BIRD SPECIES. Evolution; International Journal of Organic Evolution, 2010, 64, 852-857.	2.3	29
38	Oxidative stress as a lifeâ€history constraint: the role of reactive oxygen species in shaping phenotypes from conception to death. Functional Ecology, 2010, 24, 984-996.	3.6	450
39	Antioxidant Machinery Differs between Melanic and Light Nestlings of Two Polymorphic Raptors. PLoS ONE, 2010, 5, e13369.	2.5	31
40	Yolk testosterone shapes the expression of a melanin-based signal in great tits: an antioxidant-mediated mechanism?. Journal of Experimental Biology, 2010, 213, 3127-3130.	1.7	24
41	Carotenoid-based coloration predicts resistance to oxidative damage during immune challenge. Journal of Experimental Biology, 2010, 213, 1685-1690.	1.7	44
42	Age and Breeding Effort as Sources of Individual Variability in Oxidative Stress Markers in a Bird Species. Physiological and Biochemical Zoology, 2010, 83, 110-118.	1.5	75
43	The expression of melanin-based plumage is separately modulated by exogenous oxidative stress and a melanocortin. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 3089-3097.	2.6	121
44	Testosterone-mediated trade-offs in the old age: a new approach to the immunocompetence handicap and carotenoid-based sexual signalling. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2093-2101.	2.6	57
45	Families on the spot: sexual signals influence parent–offspring interactions. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2477-2483.	2.6	27
46	Variation in plasma biochemical parameters in captive adult red-legged partridges (Alectoris rufa) during daylight hours. European Journal of Wildlife Research, 2008, 54, 21-26.	1.4	9
47	Avoiding bad genes: oxidatively damaged DNA in germ line and mate choice. BioEssays, 2008, 30, 1212-1219.	2.5	85
48	Owls and rabbits: predation against substandard individuals of an easy prey. Journal of Avian Biology, 2008, 39, 215-221.	1.2	42
49	The oxidation handicap hypothesis and the carotenoid allocation tradeâ€off. Journal of Evolutionary Biology, 2008, 21, 1789-1797.	1.7	133
50	Cell-mediated immune activation rapidly decreases plasma carotenoids but does not affect oxidative stress in red-legged partridges (<i>Alectoris rufa</i>). Journal of Experimental Biology, 2008, 211, 2155-2161.	1.7	83
51	An Intracellular Antioxidant Determines the Expression of a Melanin-Based Signal in a Bird. PLoS ONE, 2008, 3, e3335.	2.5	131
52	The importance of visual cues for nocturnal species: eagle owls signal by badge brightness. Behavioral Ecology, 2007, 18, 143-147.	2.2	64
53	Repeated Sampling but Not Sampling Hour Affects Plasma Carotenoid Levels. Physiological and Biochemical Zoology, 2007, 80, 250-254.	1.5	12
54	Effects of acute exposure to heavy fuel oil from the Prestige spill on a seabird. Aquatic Toxicology, 2007, 84, 103-110.	4.0	73

#	Article	IF	CITATIONS
55	Sublethal toxicity of the Prestige oil spill on yellow-legged gulls. Environment International, 2007, 33, 773-781.	10.0	79
56	Testosterone and oxidative stress: the oxidation handicap hypothesis. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 819-825.	2.6	295
57	Energetic reserves, leptin and testosterone: a refinement of the immunocompetence handicap hypothesis. Biology Letters, 2007, 3, 271-274.	2.3	37
58	The Importance of Visual Cues for Nocturnal Species: Eagle Owl Fledglings Signal with White Mouth Feathers. Ethology, 2007, 113, 934-943.	1.1	27
59	Increased susceptibility to oxidative damage as a cost of accelerated somatic growth in zebra finches. Functional Ecology, 2007, 21, 873-879.	3.6	195
60	Brightness variability in the white badge of the eagle owl <i>Bubo bubo</i> . Journal of Avian Biology, 2006, 37, 110-116.	1.2	14
61	AN EXPERIMENTAL MANIPULATION OF LIFE-HISTORY TRAJECTORIES AND RESISTANCE TO OXIDATIVE STRESS. Evolution; International Journal of Organic Evolution, 2006, 60, 1913-1924.	2.3	192
62	Carotenoids modulate the trade-off between egg production and resistance to oxidative stress in zebra finches. Oecologia, 2006, 147, 576-584.	2.0	117
63	Manipulation of primary sex-ratio: an updated review. Avian Biology Research, 2006, 17, 1-20.	1.3	95
64	AN EXPERIMENTAL MANIPULATION OF LIFE-HISTORY TRAJECTORIES AND RESISTANCE TO OXIDATIVE STRESS. Evolution; International Journal of Organic Evolution, 2006, 60, 1913.	2.3	13
65	Brightness variability in the white badge of the eagle owl Bubo bubo. Journal of Avian Biology, 2006, 37, 110-116.	1.2	23
66	An experimental manipulation of life-history trajectories and resistance to oxidative stress. Evolution; International Journal of Organic Evolution, 2006, 60, 1913-24.	2.3	53
67	Age-dependent changes in plasma biochemistry of yellow-legged gulls (Larus cachinnans). Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2005, 140, 512-518.	1.8	36
68	Ultraviolet reflectance affects male-male interactions in the blue tit (Parus caeruleus ultramarinus). Behavioral Ecology, 2004, 15, 805-809.	2.2	120
69	Increased susceptibility to oxidative stress as a proximate cost of reproduction. Ecology Letters, 2004, 7, 363-368.	6.4	357
70	An Experimental Test of the Doseâ€Dependent Effect of Carotenoids and Immune Activation on Sexual Signals and Antioxidant Activity. American Naturalist, 2004, 164, 651-659.	2.1	290
71	Plasma chemistry of the chinstrap penguin Pygoscelis antarctica during fasting periods: a case of poor adaptation to food deprivation?. Polar Biology, 2003, 26, 14-19.	1.2	17
72	Differential body condition regulation by males and females in response to experimental manipulations of brood size and parental effort in the blue-footed booby. Journal of Animal Ecology, 2003, 72, 846-856.	2.8	105

CARLOS ALONSO-ALVAREZ

#	Article	IF	CITATIONS
73	Female body condition and brood sex ratio in Yellow-legged Gulls Larus cachinnans. Ibis, 2003, 145, 220-226.	1.9	46
74	Time and habitat heterogeneity constrain the opportunity for sexual selection during mating. Ethology Ecology and Evolution, 2003, 15, 295-298.	1.4	2
75	Changes in Plasma Biochemistry and Body Mass During Incubation in the Yellow-legged Gull. Waterbirds, 2002, 25, 253.	0.3	33
76	The effects of testosterone manipulation on the body condition of captive male yellow-legged gulls. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2002, 131, 293-303.	1.8	8
77	The plasmatic index of body condition in Yellow-legged Gulls Larus cachinnans: a food-controlled experiment. Ibis, 2002, 144, 147-149.	1.9	50
78	Effects of experimental food restriction and body-mass changes on the avian T-cell-mediated immune response. Canadian Journal of Zoology, 2001, 79, 101-105.	1.0	217
79	Effect of testosterone on the behaviour of Yellow-legged gulls (<i>Larus cachinnans</i>) in a high-density colony during the courtship period. Ethology Ecology and Evolution, 2001, 13, 341-349.	1.4	19
80	Effects of testosterone implants on pair behaviour during incubation in the Yellow-legged Gull Larus cachinnans. Journal of Avian Biology, 2001, 32, 326-332.	1.2	38
81	A Biochemical Study of Fasting, Subfeeding, and Recovery Processes in Yellowâ€Legged Gulls. Physiological and Biochemical Zoology, 2001, 74, 703-713.	1.5	99
82	Effects of experimental food restriction and body-mass changes on the avian T-cell-mediated immune response. Canadian Journal of Zoology, 2001, 79, 101-105.	1.0	42
83	Sex-specific transgenerational effects of early developmental conditions in a passerine. Biological Journal of the Linnean Society, 0, 91, 469-474.	1.6	18