
Scott Mundle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/467549/publications.pdf Version: 2024-02-01

SCOTT MUNDLE

#	Article	lF	CITATIONS
1	Ultravioletâ€visual spectroscopy estimation of nitrate concentrations in surface waters via machine learning. Limnology and Oceanography: Methods, 2022, 20, 26-33.	2.0	3
2	Determining the role of diffusion and basement flux in controlling 4He distribution in sedimentary basin fluids. Earth and Planetary Science Letters, 2021, 574, 117175.	4.4	11
3	Geochemical Approaches to Improve Nutrient Source Tracking in the Great Lakes. Handbook of Environmental Chemistry, 2020, , 183-216.	0.4	1
4	Citizen Science Data Show Temperature-Driven Declines in Riverine Sentinel Invertebrates. Environmental Science and Technology Letters, 2020, 7, 303-307.	8.7	6
5	â€~Nitrification kinetics and microbial community dynamics of attached biofilm in wastewater treatment'. Water Science and Technology, 2020, 81, 891-905.	2.5	8
6	Water and sediment as sources of phosphate in aquatic ecosystems: The Detroit River and its role in the Laurentian Great Lakes. Science of the Total Environment, 2019, 647, 1594-1603.	8.0	24
7	Understanding and managing the re-eutrophication of Lake Erie: Knowledge gaps and research priorities. Freshwater Science, 2019, 38, 675-691.	1.8	51
8	Distinguishing point and non-point sources of dissolved nutrients, metals, and legacy contaminants in the Detroit River. Science of the Total Environment, 2019, 681, 1-8.	8.0	11
9	New ecosystems in the deep subsurface follow the flow of water driven by geological activity. Scientific Reports, 2019, 9, 3310.	3.3	14
10	Soil gas investigation of an alleged gas migration issue on a residential farm located above the Weyburn-Midale CO2 enhanced oil recovery project. International Journal of Greenhouse Gas Control, 2019, 81, 11-20.	4.6	8
11	Methane sources and sinks in continental sedimentary systems: New insights from paired clumped isotopologues 13CH3D and 12CH2D2. Geochimica Et Cosmochimica Acta, 2019, 245, 327-351.	3.9	65
12	Increased nutrient concentrations in Lake Erie tributaries influenced by greenhouse agriculture. Science of the Total Environment, 2018, 633, 433-440.	8.0	28
13	Developing deep high-resolution concentration and 13C isotope profiles for methane, ethane, and propane. Journal of Petroleum Science and Engineering, 2018, 170, 280-290.	4.2	7
14	Branched pathways in the degradation of cDCE by cytochrome P450 in Polaromonas sp. JS666. Science of the Total Environment, 2017, 605-606, 99-105.	8.0	8
15	Fate and Transport of Shale-derived, Biogenic Methane. Scientific Reports, 2017, 7, 4881.	3.3	11
16	Measuring Concentrations of Dissolved Methane and Ethane and the ¹³ C of Methane in Shale and Till. Ground Water, 2017, 55, 119-128.	1.3	8
17	Determining Carbon Kinetic Isotope Effects Using Headspace Analysis of Evolved CO 2. Methods in Enzymology, 2017, 596, 501-522.	1.0	0
18	Fate and transport of dissolved methane and ethane in cretaceous shales of the Williston Basin, Canada. Water Resources Research, 2016, 52, 6440-6450.	4.2	17

SCOTT MUNDLE

#	Article	IF	CITATIONS
19	Eukaryotic opportunists dominate the deep-subsurface biosphere in South Africa. Nature Communications, 2015, 6, 8952.	12.8	48
20	Diffusion Sampler for Compound Specific Carbon Isotope Analysis of Dissolved Hydrocarbon Contaminants. Environmental Science & Technology, 2014, 48, 9582-9590.	10.0	21
21	Distinct Carbon Isotope Fractionation during Anaerobic Degradation of Dichlorobenzene Isomers. Environmental Science & Technology, 2014, 48, 4844-4851.	10.0	24
22	Carbon Kinetic Isotope Effects Reveal Variations in Reactivity of Intermediates in the Formation of Protonated Carbonic Acid. Journal of Organic Chemistry, 2013, 78, 12176-12181.	3.2	7
23	Avoiding CO2 in Catalysis of Decarboxylation. Advances in Physical Organic Chemistry, 2013, 47, 85-128.	0.5	11
24	Pressureâ€monitored headspace analysis combined with compoundâ€specific isotope analysis to measure isotope fractionation in gasâ€producing reactions. Rapid Communications in Mass Spectrometry, 2013, 27, 1778-1784.	1.5	14
25	Large Carbon Isotope Fractionation during Biodegradation of Chloroform by <i>Dehalobacter</i> Cultures. Environmental Science & Technology, 2012, 46, 10154-10160.	10.0	38
26	Monitoring Biodegradation of Ethene and Bioremediation of Chlorinated Ethenes at a Contaminated Site Using Compound-Specific Isotope Analysis (CSIA). Environmental Science & Technology, 2012, 46, 1731-1738.	10.0	50
27	Origins of Steric Effects in General-Base-Catalyzed Enolization: Solvation and Electrostatic Attraction. Journal of the American Chemical Society, 2012, 134, 1066-1070.	13.7	5
28	Protonated Carbonic Acid and Reactive Intermediates in the Acidic Decarboxylation of Indolecarboxylic Acids. Journal of Organic Chemistry, 2012, 77, 6505-6509.	3.2	18
29	Investigating the Mechanism of Heteroaromatic Decarboxylation Using Solvent Kinetic Isotope Effects and Eyring Transition-State Theory. Journal of Chemical Education, 2011, 88, 1004-1006.	2.3	10
30	The role of pre-association in BrÃ,nsted acid-catalyzed decarboxylation and related processes. Advances in Physical Organic Chemistry, 2010, , 357-375.	0.5	6
31	Hydrolytic Decarboxylation of Carboxylic Acids and the Formation of Protonated Carbonic Acid. Journal of the American Chemical Society, 2010, 132, 2430-2436.	13.7	44
32	Insights into Enzyme Kinetics of Chloroethane Biodegradation Using Compound Specific Stable Isotopes. Environmental Science & Technology, 2010, 44, 7498-7503.	10.0	50
33	Internal Return of Carbon Dioxide in Decarboxylation: Catalysis of Separation and ¹² C/ ¹³ C Kinetic Isotope Effects. Journal of the American Chemical Society, 2009, 131, 11638-11639.	13.7	32
34	Decarboxylation via Addition of Water to a Carboxyl Group: Acid Catalysis of Pyrrole-2-Carboxylic Acid. Journal of the American Chemical Society, 2009, 131, 11674-11675.	13.7	52
35	The Hammett Equation: Probing the Mechanism of Aromatic Semicarbazone Formation. Journal of Chemical Education, 2006, 83, 1341.	2.3	9