Guanghua Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4675119/publications.pdf

Version: 2024-02-01

57	2,679	25	50
papers	citations	h-index	g-index
60	60	60	1915
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Bistable expression of WOR1, a master regulator of white-opaque switching in Candida albicans. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12813-12818.	7.1	277
2	Candida auris: Epidemiology, biology, antifungal resistance, and virulence. PLoS Pathogens, 2020, 16, e1008921.	4.7	270
3	N-Acetylglucosamine Induces White to Opaque Switching, a Mating Prerequisite in Candida albicans. PLoS Pathogens, 2010, 6, e1000806.	4.7	180
4	CO2 Regulates White-to-Opaque Switching in Candida albicans. Current Biology, 2009, 19, 330-334.	3.9	160
5	Regulation of phenotypic transitions in the fungal pathogen <i>Candida albicans</i> . Virulence, 2012, 3, 251-261.	4.4	130
6	The first isolate of <i>Candida auris</i> in China: clinical and biological aspects. Emerging Microbes and Infections, 2018, 7, 1-9.	6.5	126
7	Discovery of a "White-Gray-Opaque―Tristable Phenotypic Switching System in Candida albicans: Roles of Non-genetic Diversity in Host Adaptation. PLoS Biology, 2014, 12, e1001830.	5.6	122
8	White-Opaque Switching in Natural MTLa/ \hat{l} ± Isolates of Candida albicans: Evolutionary Implications for Roles in Host Adaptation, Pathogenesis, and Sex. PLoS Biology, 2013, 11, e1001525.	5.6	107
9	Filamentation in <i>Candida auris</i> , an emerging fungal pathogen of humans: passage through the mammalian body induces a heritable phenotypic switch. Emerging Microbes and Infections, 2018, 7, 1-13.	6.5	105
10	Tec1 Mediates the Pheromone Response of the White Phenotype of Candida albicans: Insights into the Evolution of New Signal Transduction Pathways. PLoS Biology, 2010, 8, e1000363.	5.6	85
11	Alternative Mating Type Configurations (all versus ala or l+l+) of Candida albicans Result in Alternative Biofilms Regulated by Different Pathways. PLoS Biology, 2011, 9, e1001117.	5.6	73
12	Multiple roles and diverse regulation of the Ras/cAMP/protein kinase A pathway in <i>Candida albicans</i> . Molecular Microbiology, 2019, 111, 6-16.	2.5	64
13	Roles of Candida albicans Gat2, a GATA-Type Zinc Finger Transcription Factor, in Biofilm Formation, Filamentous Growth and Virulence. PLoS ONE, 2012, 7, e29707.	2.5	61
14	Global regulatory roles of the c <scp>AMP/PKA</scp> pathway revealed by phenotypic, transcriptomic and phosphoproteomic analyses in a null mutant of the <scp>PKA</scp> catalytic subunit in <i><scp>C</scp> andida albicans</i>	2.5	60
15	<i>N</i> -Acetylglucosamine Induces White-to-Opaque Switching and Mating in Candida tropicalis, Providing New Insights into Adaptation and Fungal Sexual Evolution. Eukaryotic Cell, 2012, 11, 773-782.	3.4	58
16	Integration of the tricarboxylic acid (TCA) cycle with cAMP signaling and Sfl2 pathways in the regulation of CO2 sensing and hyphal development in Candida albicans. PLoS Genetics, 2017, 13, e1006949.	3.5	58
17	The transcription factor Flo8 mediates CO ₂ sensing in the human fungal pathogen <i>Candida albicans</i> . Molecular Biology of the Cell, 2012, 23, 2692-2701.	2.1	51
18	Experimental Evolution Identifies Adaptive Aneuploidy as a Mechanism of Fluconazole Resistance in Candida auris. Antimicrobial Agents and Chemotherapy, 2020, 65, .	3.2	46

#	Article	IF	CITATIONS
19	Environmental pH adaption and morphological transitions in Candida albicans. Current Genetics, 2016, 62, 283-286.	1.7	37
20	<pre><scp>Bcr</scp>1 plays a central role in the regulation of opaque cell filamentation in <i><scp>C</scp>andida albicans</i>. Molecular Microbiology, 2013, 89, 732-750.</pre>	2.5	36
21	<i>N</i> -Acetylglucosamine-Induced Cell Death in Candida albicans and Its Implications for Adaptive Mechanisms of Nutrient Sensing in Yeasts. MBio, 2015, 6, e01376-15.	4.1	35
22	pH Regulates White-Opaque Switching and Sexual Mating in Candida albicans. Eukaryotic Cell, 2015, 14, 1127-1134.	3.4	34
23	Regulation of filamentation in the human fungal pathogen <scp><i>C</i></scp> <i>andida tropicalis</i> . Molecular Microbiology, 2016, 99, 528-545.	2.5	34
24	Beauvericin counteracted multi-drug resistant Candida albicans by blocking ABC transporters. Synthetic and Systems Biotechnology, 2016, 1, 158-168.	3.7	31
25	Innate immune responses against the fungal pathogen Candida auris. Nature Communications, 2022, 13 , \cdot	12.8	30
26	Lactic acid bacteria differentially regulate filamentation in two heritable cell types of the human fungal pathogen <i>Candida albicans</i> . Molecular Microbiology, 2016, 102, 506-519.	2.5	29
27	White Cells Facilitate Opposite- and Same-Sex Mating of Opaque Cells in Candida albicans. PLoS Genetics, 2014, 10, e1004737.	3.5	23
28	Self-Induction of $\langle b \rangle a \langle b \rangle / \langle b \rangle a \langle b \rangle$ or $\hat{l} \pm \hat{l} \pm b $ Biofilms in Candida albicans Is a Pheromone-Based Paracrine System Requiring Switching. Eukaryotic Cell, 2011, 10, 753-760.	3.4	22
29	Genomic epidemiology of <i>Candida auris</i> in a general hospital in Shenyang, China: a three-year surveillance study. Emerging Microbes and Infections, 2021, 10, 1088-1096.	6.5	21
30	The mitochondrial protein Mcu1 plays important roles in carbon source utilization, filamentation, and virulence in Candida albicans. Fungal Genetics and Biology, 2015, 81, 150-159.	2.1	20
31	Environmental and genetic regulation of whiteâ€opaque switching in <i>Candida tropicalis</i> . Molecular Microbiology, 2017, 106, 999-1017.	2.5	20
32	The Regulatory Subunit of Protein Kinase A (Bcy1) in Candida albicans Plays Critical Roles in Filamentation and White-Opaque Switching but Is Not Essential for Cell Growth. Frontiers in Microbiology, 2016, 7, 2127.	3.5	19
33	Environment-induced same-sex mating in the yeast Candida albicans through the Hsf1–Hsp90 pathway. PLoS Biology, 2019, 17, e2006966.	5.6	19
34	Filamentous growth is a general feature of <i>Candida auris</i> clinical isolates. Medical Mycology, 2021, 59, 734-740.	0.7	19
35	The zinc-finger transcription factor, Ofi1, regulates white–opaque switching and filamentation in the yeast <italic>Candida albicans</italic> . Acta Biochimica Et Biophysica Sinica, 2015, 47, 335-341.	2.0	16
36	Discovery of the gray phenotype and white-gray-opaque tristable phenotypic transitions in <i>Candida dubliniensis </i> . Virulence, 2016, 7, 230-242.	4.4	15

#	Article	IF	Citations
37	A coupled process of same- and opposite-sex mating generates polyploidy and genetic diversity in Candida tropicalis. PLoS Genetics, 2018, 14, e1007377.	3.5	14
38	The gray phenotype and tristable phenotypic transitions in the human fungal pathogen Candida tropicalis. Fungal Genetics and Biology, 2016, 93, 10-16.	2.1	13
39	Role of the N-acetylglucosamine kinase (Hxk1) in the regulation of white-gray-opaque tristable phenotypic transitions in C. albicans. Fungal Genetics and Biology, 2016, 92, 26-32.	2.1	11
40	Revision of the medically relevant species of the yeast genus <i>Diutina</i> . Medical Mycology, 2019, 57, 226-233.	0.7	11
41	A biological and genomic comparison of a drug-resistant and a drug-susceptible strain of <i>Candida auris</i> isolated from Beijing, China. Virulence, 2021, 12, 1388-1399.	4.4	11
42	Phenotypic diversity and correlation between white–opaque switching and the CAI microsatellite locus in Candida albicans. Current Genetics, 2016, 62, 585-593.	1.7	10
43	Discovery of the Diploid Form of the Emerging Fungal Pathogen <i>Candida auris</i> . ACS Infectious Diseases, 2020, 6, 2641-2646.	3.8	10
44	A case of <i>Candida auris</i> candidemia in Xiamen, China, and a comparative analysis of clinical isolates in China. Mycology, 2022, 13, 68-75.	4.4	10
45	<i>Streptococcus mutans</i> suppresses filamentous growth of <i>Candida albicans</i> through secreting mutanocyclin, an unacylated tetramic acid. Virulence, 2022, 13, 542-557.	4.4	10
46	N-acetylglucosamine-induced white-to-opaque switching in Candida albicans is independent of the Wor2 transcription factor. Fungal Genetics and Biology, 2014, 62, 71-77.	2.1	9
47	N-Acetylglucosamine (GlcNAc) Sensing, Utilization, and Functions in Candida albicans. Journal of Fungi (Basel, Switzerland), 2020, 6, 129.	3.5	9
48	<i>Candida auris</i> infections in China. Virulence, 2022, 13, 589-591.	4.4	9
49	The Als3 Cell Wall Adhesin Plays a Critical Role in Human Serum Amyloid A1-Induced Cell Death and Aggregation in Candida albicans. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	8
50	Antifungal Activity of Mammalian Serum Amyloid A1 against <i>Candida albicans</i> Antimicrobial Agents and Chemotherapy, 2019, 64, .	3.2	7
51	The general transcriptional repressor Tup1 governs filamentous development in. Acta Biochimica Et Biophysica Sinica, 2019, 51, 463-470.	2.0	4
52	The PHO pathway regulates white–opaque switching and sexual mating in the human fungal pathogen Candida albicans. Current Genetics, 2020, 66, 1155-1162.	1.7	4
53	Genetic regulation of the development of mating projections in <i>Candida albicans</i> Microbes and Infections, 2020, 9, 413-426.	6.5	3
54	Ploidy Variation and Spontaneous Haploid-Diploid Switching of Candida glabrata Clinical Isolates. MSphere, 2022, 7, .	2.9	3

#	Article	IF	CITATIONS
55	Biological and genomic analyses of a clinical isolate of Yarrowia galli from China. Current Genetics, 2020, 66, 549-559.	1.7	2
56	Epigenetic Switching in the Human Fungal Pathogen Candida albicans. Epigenetics and Human Health, $2017, 175-187$.	0.2	0
57	Candida albicans MTLa2 regulates the mating response through both the a-factor and α-factor sensing pathways. Fungal Genetics and Biology, 2022, 159, 103664.	2.1	0