
Pricila Hauk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4674868/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adaptive immune responses in vaccinated patients with symptomatic SARS-CoV-2 Alpha infection. JCI Insight, 2022, 7, .	5.0	12
2	Homologous Quorum Sensing Regulatory Circuit: A Dual-Input Genetic Controller for Modulating Quorum Sensing-Mediated Protein Expression in E. coli. ACS Synthetic Biology, 2020, 9, 2692-2702.	3.8	9
3	A redox-based electrogenetic CRISPR system to connect with and control biological information networks. Nature Communications, 2020, 11, 2427.	12.8	46
4	Bacterial co-culture with cell signaling translator and growth controller modules for autonomously regulated culture composition. Nature Communications, 2019, 10, 4129.	12.8	91
5	Plasmidâ€encoded protein attenuates Escherichia coli swimming velocity and cell growth, not reprogrammed regulatory functions. Biotechnology Progress, 2019, 35, e2778.	2.6	3
6	Incorporating LsrK Alâ \in quorum quenching capability in a functionalized biopolymer capsule. Biotechnology and Bioengineering, 2018, 115, 278-289.	3.3	12
7	Engineering bacterial motility towards hydrogen-peroxide. PLoS ONE, 2018, 13, e0196999.	2.5	31
8	Evidence of link between quorum sensing and sugar metabolism in <i>Escherichia coli</i> revealed via cocrystal structures of LsrK and HPr. Science Advances, 2018, 4, eaar7063.	10.3	68
9	Development of Cell-Based Sentinels for Nitric Oxide: Ensuring Marker Expression and Unimodality. ACS Synthetic Biology, 2018, 7, 1694-1701.	3.8	24
10	Modification and Assembly of a Versatile Lactonase for Bacterial Quorum Quenching. Molecules, 2018, 23, 341.	3.8	8
11	Controlling localization of <i>Escherichia coli</i> populations using a twoâ€part synthetic motility circuit: An accelerator and brake. Biotechnology and Bioengineering, 2017, 114, 2883-2895.	3.3	16
12	Model for the allosteric regulation of the <scp>N</scp> a ⁺ / <scp>C</scp> a ²⁺ exchanger <scp>NCX</scp> . Proteins: Structure, Function and Bioinformatics, 2016, 84, 580-590.	2.6	11
13	Insightful directed evolution of <i>Escherichia coli</i> quorum sensing promoter region of the <i>lsrACDBFG</i> operon: a tool for synthetic biology systems and protein expression. Nucleic Acids Research, 2016, 44, gkw981.	14.5	9
14	Modular protein switches derived from antibody mimetic proteins. Protein Engineering, Design and Selection, 2016, 29, 77-85.	2.1	20
15	Calcium Binding to Leptospira Outer Membrane Antigen LipL32 Is Not Necessary for Its Interaction with Plasma Fibronectin, Collagen Type IV, and Plasminogen. Journal of Biological Chemistry, 2012, 287, 4826-4834.	3.4	15
16	Expression and purification of the non-tagged LipL32 of pathogenic Leptospira. Brazilian Journal of Medical and Biological Research, 2011, 44, 297-302.	1.5	6
17	Increased Immunogenicity to LipL32 of Leptospira interrogans when Expressed as a Fusion Protein with the Cholera Toxin B Subunit. Current Microbiology, 2011, 62, 526-531.	2.2	18
18	Crystallization and preliminary X-ray analysis of LipL32 fromLeptospira interrogansserovar Copenhageni. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 307-309.	0.7	2

Pricila Hauk

#	Article	IF	CITATIONS
19	Structure and Calcium-Binding Activity of LipL32, the Major Surface Antigen of Pathogenic Leptospira sp Journal of Molecular Biology, 2009, 390, 722-736.	4.2	41
20	Leptospiral TlyC is an extracellular matrixâ€binding protein and does not present hemolysin activity. FEBS Letters, 2009, 583, 1381-1385.	2.8	52
21	In LipL32, the Major Leptospiral Lipoprotein, the C Terminus Is the Primary Immunogenic Domain and Mediates Interaction with Collagen IV and Plasma Fibronectin. Infection and Immunity, 2008, 76, 2642-2650.	2.2	125
22	Expression and characterization of HlyX hemolysin from Leptospira interrogans serovar Copenhageni: Potentiation of hemolytic activity by LipL32. Biochemical and Biophysical Research Communications, 2005, 333, 1341-1347.	2.1	25