

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4674729/publications.pdf Version: 2024-02-01

SONCL

#	Article	IF	CITATIONS
1	Engineering organ-on-a-chip systems to model viral infections. Biofabrication, 2023, 15, 022001.	7.1	10
2	End-Point Immobilization of Heparin on Electrospun Polycarbonate-Urethane Vascular Graft. Methods in Molecular Biology, 2022, 2375, 47-59.	0.9	2
3	Immunomodulatory microneedle patch for periodontal tissue regeneration. Matter, 2022, 5, 666-682.	10.0	49
4	Engineered Delivery of Dental Stemâ€Cellâ€Derived Extracellular Vesicles for Periodontal Tissue Regeneration. Advanced Healthcare Materials, 2022, 11, e2102593.	7.6	15
5	Immunoengineering strategies to enhance vascularization and tissue regeneration. Advanced Drug Delivery Reviews, 2022, 184, 114233.	13.7	18
6	Giant Magnetoelastic Effect Enabled Stretchable Sensor for Self-Powered Biomonitoring. ACS Nano, 2022, 16, 6013-6022.	14.6	59
7	Intramuscular delivery of neural crest stem cell spheroids enhances neuromuscular regeneration after denervation injury. Stem Cell Research and Therapy, 2022, 13, 205.	5.5	8
8	Loosely-packed dynamical structures with partially-melted surface being the key for thermophilic argonaute proteins achieving high DNA-cleavage activity. Nucleic Acids Research, 2022, 50, 7529-7544.	14.5	9
9	Engineering stem cell therapeutics for cardiac repair. Journal of Molecular and Cellular Cardiology, 2022, 171, 56-68.	1.9	12
10	Cellular remodeling of fibrotic conduit as vascular graft. Biomaterials, 2021, 268, 120565.	11.4	16
11	Asymmetric Cell Division of Fibroblasts is An Early Deterministic Step to Generate Elite Cells during Cell Reprogramming. Advanced Science, 2021, 8, 2003516.	11.2	7
12	Neural crest-like stem cells for tissue regeneration. Stem Cells Translational Medicine, 2021, 10, 681-693.	3.3	20
13	Skeletal muscle regeneration via the chemical induction and expansion of myogenic stem cells in situ or in vitro. Nature Biomedical Engineering, 2021, 5, 864-879.	22.5	23
14	Micro/nano materials regulate cell morphology and intercellular communication by extracellular vesicles. Acta Biomaterialia, 2021, 124, 130-138.	8.3	8
15	Bioorthogonal catalytic patch. Nature Nanotechnology, 2021, 16, 933-941.	31.5	130
16	Biomaterial-based immunoengineering to fight COVID-19 and infectious diseases. Matter, 2021, 4, 1528-1554.	10.0	21
17	Substrate Stiffness Regulates Cholesterol Efflux in Smooth Muscle Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 648715.	3.7	2
18	Application of lung microphysiological systems to COVID-19 modeling and drug discovery: a review. Bio-Design and Manufacturing, 2021, 4, 757-775.	7.7	29

#	Article	IF	CITATIONS
19	Engineering the Composition of Microfibers to Enhance the Remodeling of a Cell-Free Vascular Graft. Nanomaterials, 2021, 11, 1613.	4.1	5
20	Giant magnetoelastic effect in soft systems for bioelectronics. Nature Materials, 2021, 20, 1670-1676.	27.5	175
21	Photodegradable Polyacrylamide Gels for Dynamic Control of Cell Functions. ACS Applied Materials & Interfaces, 2021, 13, 5929-5944.	8.0	24
22	Three-dimensional Imaging Coupled with Topological Quantification Uncovers Retinal Vascular Plexuses Undergoing Obliteration. Theranostics, 2021, 11, 1162-1175.	10.0	6
23	Soft fibers with magnetoelasticity for wearable electronics. Nature Communications, 2021, 12, 6755.	12.8	150
24	Differentiation of Neural Crest Stem Cells in Response to Matrix Stiffness and TGF-β1 in Vascular Regeneration. Stem Cells and Development, 2020, 29, 249-256.	2.1	7
25	Cell engineering: Biophysical regulation of the nucleus. Biomaterials, 2020, 234, 119743.	11.4	39
26	Development of Injectable Amniotic Membrane Matrix for Postmyocardial Infarction Tissue Repair. Advanced Healthcare Materials, 2020, 9, e1900544.	7.6	25
27	Unraveling the mechanobiology of immune cells. Current Opinion in Biotechnology, 2020, 66, 236-245.	6.6	55
28	Augmenting T-cell responses to tumors by <i>in situ</i> nanomanufacturing. Materials Horizons, 2020, 7, 3028-3033.	12.2	3
29	Mechanical regulation of histone modifications and cell plasticity. Current Opinion in Solid State and Materials Science, 2020, 24, 100872.	11.5	18
30	Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration. Nature Communications, 2020, 11, 5990.	12.8	144
31	Drug Delivery: Injectable Drugâ€Releasing Microporous Annealed Particle Scaffolds for Treating Myocardial Infarction (Adv. Funct. Mater. 43/2020). Advanced Functional Materials, 2020, 30, 2070289.	14.9	2
32	Combined Effects of Electric Stimulation and Microgrooves in Cardiac Tissueâ€onâ€a hip for Drug Screening. Small Methods, 2020, 4, 2000438.	8.6	15
33	Injectable Drugâ€Releasing Microporous Annealed Particle Scaffolds for Treating Myocardial Infarction. Advanced Functional Materials, 2020, 30, 2004307.	14.9	57
34	Endothelial Cell Morphology Regulates Inflammatory Cells Through MicroRNA Transferred by Extracellular Vesicles. Frontiers in Bioengineering and Biotechnology, 2020, 8, 369.	4.1	12
35	An engineered cell-laden adhesive hydrogel promotes craniofacial bone tissue regeneration in rats. Science Translational Medicine, 2020, 12, .	12.4	199
36	Multi-scale cellular engineering: From molecules to organ-on-a-chip. APL Bioengineering, 2020, 4, 010906.	6.2	8

#	Article	IF	CITATIONS
37	Engineering Biomaterials with Micro/Nanotechnologies for Cell Reprogramming. ACS Nano, 2020, 14, 1296-1318.	14.6	39
38	Nano-in-Micro Dual Delivery Platform for Chronic Wound Healing Applications. Micromachines, 2020, 11, 158.	2.9	10
39	T-cell activation is modulated by the 3D mechanical microenvironment. Biomaterials, 2020, 252, 120058.	11.4	60
40	Matrix stiffness regulates the interactions between endothelial cells and monocytes. Biomaterials, 2019, 221, 119362.	11.4	38
41	Matrix stiffness regulates SMC functions via TGF-Î ² signaling pathway. Biomaterials, 2019, 221, 119407.	11.4	32
42	Multipotent vascular stem cells contribute to neurovascular regeneration of peripheral nerve. Stem Cell Research and Therapy, 2019, 10, 234.	5.5	12
43	Augmentation of T-Cell Activation by Oscillatory Forces and Engineered Antigen-Presenting Cells. Nano Letters, 2019, 19, 6945-6954.	9.1	32
44	Glucose transporter inhibitor-conjugated insulin mitigates hypoglycemia. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10744-10748.	7.1	38
45	Hierarchically Patterned Polydopamine-Containing Membranes for Periodontal Tissue Engineering. ACS Nano, 2019, 13, 3830-3838.	14.6	105
46	Biodegradable Gelatin Methacryloyl Microneedles for Transdermal Drug Delivery. Advanced Healthcare Materials, 2019, 8, e1801054.	7.6	177
47	Contribution of bone marrow-derived cells to in situ engineered tissue capsules in a rat model of chronic kidney disease. Biomaterials, 2019, 194, 47-56.	11.4	10
48	Regeneration of a neoartery through a completely autologous acellular conduit in a minipig model: a pilot study. Journal of Translational Medicine, 2019, 17, 24.	4.4	7
49	Matrix stiffness modulates the differentiation of neural crest stem cells in vivo. Journal of Cellular Physiology, 2019, 234, 7569-7578.	4.1	38
50	Neural crestâ€derived cells migrate from nerve to participate in Achilles tendon remodeling. Wound Repair and Regeneration, 2018, 26, 54-63.	3.0	10
51	Adult Stem Cells in Vascular Remodeling. Theranostics, 2018, 8, 815-829.	10.0	37
52	End-point immobilization of heparin on plasma-treated surface of electrospun polycarbonate-urethane vascular graft. Acta Biomaterialia, 2017, 51, 138-147.	8.3	79
53	Biophysical regulation of cell reprogramming. Current Opinion in Chemical Engineering, 2017, 15, 95-101.	7.8	26
54	Sox10+ adult stem cells contribute to biomaterial encapsulation and microvascularization. Scientific Reports, 2017, 7, 40295.	3.3	15

#	Article	IF	CITATIONS
55	Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nature Biomedical Engineering, 2017, 1, 889-901.	22.5	566
56	Roles of TGFβ and FGF signals during growth and differentiation of mouse lens epithelial cell in vitro. Scientific Reports, 2017, 7, 7274.	3.3	13
57	Sox10 ⁺ Cells Contribute to Vascular Development in Multiple Organs—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1727-1731.	2.4	19
58	The Differentiation Stage of Transplanted Stem Cells Modulates Nerve Regeneration. Scientific Reports, 2017, 7, 17401.	3.3	50
59	Comparison of plasma and chemical modifications of poly-L-lactide-co-caprolactone scaffolds for heparin conjugation. Biomedical Materials (Bristol), 2017, 12, 065004.	3.3	11
60	Delivery of stromal cell-derived factor $1\hat{l}\pm$ for in situ tissue regeneration. Journal of Biological Engineering, 2017, 11, 22.	4.7	42
61	Contribution of Vascular Cells to Neointimal Formation. PLoS ONE, 2017, 12, e0168914.	2.5	38
62	Microtopography Attenuates Endothelial Cell Proliferation by Regulating MicroRNAs. Journal of Biomaterials and Nanobiotechnology, 2017, 08, 189-201.	0.5	7
63	Effect of biophysical cues on reprogramming to cardiomyocytes. Biomaterials, 2016, 103, 1-11.	11.4	62
64	Dynamic culture improves cell reprogramming efficiency. Biomaterials, 2016, 92, 36-45.	11.4	18
65	In vitro cardiomyocyte-driven biogenerator based on aligned piezoelectric nanofibers. Nanoscale, 2016, 8, 7278-7286.	5.6	32
66	Biomimetic gradient scaffold from ice-templating for self-seeding of cells with capillary effect. Acta Biomaterialia, 2015, 20, 113-119.	8.3	101
67	Expression and Cell Distribution of SENP3 in the Cerebral Cortex After Experimental Subarachnoid Hemorrhage in Rats: A Pilot Study. Cellular and Molecular Neurobiology, 2015, 35, 407-416.	3.3	7
68	Electrospun bilayer fibrous scaffolds for enhanced cell infiltration and vascularization in vivo. Acta Biomaterialia, 2015, 13, 131-141.	8.3	59
69	Growth inhibitory in vitro effects of glycyrrhizic acid in U251 glioblastoma cell line. Neurological Sciences, 2014, 35, 1115-1120.	1.9	44
70	Vascular tissue engineering: from <i>in vitro</i> to <i>in situ</i> . Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2014, 6, 61-76.	6.6	135
71	Induced Pluripotent Stem Cells for Regenerative Medicine. Annual Review of Biomedical Engineering, 2014, 16, 277-294.	12.3	123
72	Biophysical regulation of epigenetic state and cell reprogramming. Nature Materials, 2013, 12, 1154-1162.	27.5	437

#	Article	IF	CITATIONS
73	Human induced pluripotent stem cell-derived neural crest stem cells integrate into the injured spinal cord in the fetal lamb model of myelomeningocele. Journal of Pediatric Surgery, 2013, 48, 158-163.	1.6	76
74	Synovial stem cells and their responses to the porosity of microfibrous scaffold. Acta Biomaterialia, 2013, 9, 7264-7275.	8.3	23
75	Human iPSC-Derived Neural Crest Stem Cells Promote Tendon Repair in a Rat Patellar Tendon Window Defect Model. Tissue Engineering - Part A, 2013, 19, 2439-2451.	3.1	85
76	Derivation of Smooth Muscle Cells with Neural Crest Origin from Human Induced Pluripotent Stem Cells. Cells Tissues Organs, 2012, 195, 5-14.	2.3	50
77	Heparin-Modified Small-Diameter Nanofibrous Vascular Grafts. IEEE Transactions on Nanobioscience, 2012, 11, 22-27.	3.3	38
78	Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds. Acta Biomaterialia, 2012, 8, 2648-2658.	8.3	118
79	The effect of stromal cell-derived factor-1α/heparin coating of biodegradable vascular grafts on the recruitment of both endothelial and smooth muscle progenitor cells for accelerated regeneration. Biomaterials, 2012, 33, 8062-8074.	11.4	147
80	Differentiation of multipotent vascular stem cells contributes to vascular diseases. Nature Communications, 2012, 3, 875.	12.8	249
81	Engineering Bi-Layer Nanofibrous Conduits for Peripheral Nerve Regeneration. Tissue Engineering - Part C: Methods, 2011, 17, 705-715.	2.1	81
82	Biophysical Regulation of Histone Acetylation in Mesenchymal Stem Cells. Biophysical Journal, 2011, 100, 1902-1909.	0.5	148
83	Nonthrombogenic Approaches to Cardiovascular Bioengineering. Annual Review of Biomedical Engineering, 2011, 13, 451-475.	12.3	105
84	Uniaxial Mechanical Strain Modulates the Differentiation of Neural Crest Stem Cells into Smooth Muscle Lineage on Micropatterned Surfaces. PLoS ONE, 2011, 6, e26029.	2.5	34
85	Unidirectional mechanical cellular stimuli via micropost array gradients. Soft Matter, 2011, 7, 4606.	2.7	68
86	The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β. Biomaterials, 2011, 32, 3921-3930.	11.4	641
87	Induced pluripotent stem cells for neural tissue engineering. Biomaterials, 2011, 32, 5023-5032.	11.4	214
88	The effect of fiber alignment and heparin coating on cell infiltration into nanofibrous PLLA scaffolds. Biomaterials, 2010, 31, 3536-3542.	11.4	152
89	Antithrombogenic Modification of Small-Diameter Microfibrous Vascular Grafts. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1621-1627.	2.4	104
90	Engineering of aligned skeletal muscle by micropatterning. American Journal of Translational Research (discontinued), 2010, 2, 43-55.	0.0	38

#	Article	IF	CITATIONS
91	The HIV-1 matrix protein p17 activates the transcription factors c-Myc and CREB in human B cells. New Microbiologica, 2010, 33, 13-24.	0.1	7
92	Cell-Shape Regulation of Smooth Muscle Cell Proliferation. Biophysical Journal, 2009, 96, 3423-3432.	0.5	175
93	Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11915-11920.	7.1	360
94	Bioactive Nanofibers:Â Synergistic Effects of Nanotopography and Chemical Signaling on Cell Guidance. Nano Letters, 2007, 7, 2122-2128.	9.1	339
95	Myotube Assembly on Nanofibrous and Micropatterned Polymers. Nano Letters, 2006, 6, 537-542.	9.1	293
96	A rodent model of myocardial infarction for testing the efficacy of cells and polymers for myocardial reconstruction. Nature Protocols, 2006, 1, 1596-1609.	12.0	37
97	Injectable Biopolymers Enhance Angiogenesis after Myocardial Infarction. Tissue Engineering, 2005, 11, 1860-1866.	4.6	181
98	Proteomic Profiling of Bone Marrow Mesenchymal Stem Cells upon Transforming Growth Factor β1 Stimulation. Journal of Biological Chemistry, 2004, 279, 43725-43734.	3.4	215
99	Signal Transduction in Matrix Contraction and the Migration of Vascular Smooth Muscle Cells in Three-Dimensional Matrix. Journal of Vascular Research, 2003, 40, 378-388.	1.4	47
100	Role of vicinal cysteine pairs in metalloid sensing by the ArsD As(III)-responsive repressor. Molecular Microbiology, 2001, 41, 687-696.	2.5	19
101	Measurement of Orientation and Distribution of Cellular Alignment and Cytoskeletal Organization. Annals of Biomedical Engineering, 1999, 27, 712-720.	2.5	93
102	Fluid Shear Stress Activation of Focal Adhesion Kinase. Journal of Biological Chemistry, 1997, 272, 30455-30462.	3.4	379
103	Engineering Microenvironments to Control Stem Cell Functions. , 0, , 311-326.		0
104	The molecular dynamics of focal adhesion kinase in the mechanotaxis of endothelial cell migration. , 0, , .		0