
Ali CoÅKun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4674400/publications.pdf Version: 2024-02-01

ΑΠΟΟΑΫκιιΝ

#	Article	IF	CITATIONS
1	Tuning the Transport Properties of Gases in Porous Graphene Membranes with Controlled Pore Size and Thickness. Advanced Materials, 2022, 34, e2106785.	21.0	18
2	Fully Conjugated Tetraoxa[8]circuleneâ€Based Porous Semiconducting Polymers. Angewandte Chemie, 2022, 134, .	2.0	2
3	Fully Conjugated Tetraoxa[8]circuleneâ€Based Porous Semiconducting Polymers. Angewandte Chemie - International Edition, 2022, 61, .	13.8	11
4	Integrated Ringâ€Chain Design of a New Fluorinated Ether Solvent for Highâ€Voltage Lithiumâ€Metal Batteries. Angewandte Chemie, 2022, 134, .	2.0	8
5	Integrated Ringâ€Chain Design of a New Fluorinated Ether Solvent for Highâ€Voltage Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, e202115884.	13.8	50
6	Salt-Templated Solvothermal Synthesis of Dioxane-Linked Three-Dimensional Nanoporous Organic Polymers for Carbon Dioxide and Iodine Capture. ACS Applied Nano Materials, 2022, 5, 13711-13719.	5.0	8
7	Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries. Nature Communications, 2022, 13, 2575.	12.8	147
8	Fluorinated Cyclic Ether Co-solvents for Ultra-high-Voltage Practical Lithium-Metal Batteries. ACS Applied Energy Materials, 2022, 5, 7784-7790.	5.1	5
9	Porous polyisothiocyanurates for selective palladium recovery and heterogeneous catalysis. CheM, 2022, 8, 2043-2059.	11.7	28
10	Dual Functional High Donor Electrolytes for Lithium–Sulfur Batteries under Lithium Nitrate Free and Lean Electrolyte Conditions. ACS Energy Letters, 2022, 7, 2459-2468.	17.4	23
11	Porous shape-persistent rylene imine cages with tunable optoelectronic properties and delayed fluorescence. Chemical Science, 2021, 12, 5275-5285.	7.4	14
12	The Prospect of Dimensionality in Porous Semiconductors. Chemistry - A European Journal, 2021, 27, 7489-7501.	3.3	15
13	Stable Solid Electrolyte Interphase Formation Induced by Monoquat-Based Anchoring in Lithium Metal Batteries. ACS Energy Letters, 2021, 6, 1711-1718.	17.4	40
14	Frontispiece: The Prospect of Dimensionality in Porous Semiconductors. Chemistry - A European Journal, 2021, 27, .	3.3	0
15	The Green Lean Amine Machine: Harvesting Electric Power While Capturing Carbon Dioxide from Breath. Advanced Science, 2021, 8, e2100995.	11.2	4
16	Cyclotetrabenzil-Based Porous Organic Polymers with High Carbon Dioxide Affinity. Organic Materials, 2021, 03, 346-352.	2.0	7
17	Molten Salt Templated Synthesis of Covalent Isocyanurate Frameworks with Tunable Morphology and High CO ₂ Uptake Capacity. ACS Applied Materials & Interfaces, 2021, 13, 26102-26108.	8.0	19
18	Ultrahigh permeance metal coated porous graphene membranes with tunable gas selectivities. CheM, 2021, 7, 2385-2394.	11.7	15

ΑLΙ COÅΫκυΝ

#	Article	IF	CITATIONS
19	Ionic Liquid Functionalized Gel Polymer Electrolytes for Stable Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 22973-22978.	2.0	19
20	lonic Liquid Functionalized Gel Polymer Electrolytes for Stable Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 22791-22796.	13.8	58
21	One-step anodization-electrophoretic deposition of titanium nanotubes-graphene nanoribbon framework for water oxidation. Journal of Electroanalytical Chemistry, 2021, 902, 115802.	3.8	2
22	Hierarchically Porous Reduced Graphene Oxide Coated with Metal–Organic Framework HKUST-1 for Enhanced Hydrogen Gas Affinity. ACS Applied Nano Materials, 2020, 3, 985-991.	5.0	20
23	Nitrogenâ€Doped Carbons with Hierarchical Porosity via Chemical Blowing Towards Longâ€Lived Metalâ€Free Catalysts for Acetylene Hydrochlorination. ChemCatChem, 2020, 12, 1922-1925.	3.7	10
24	In Situ Deprotection of Polymeric Binders for Solutionâ€Processible Sulfideâ€Based Allâ€Solidâ€State Batteries. Advanced Materials, 2020, 32, e2001702.	21.0	43
25	COFs Meet Graphene Nanoribbons. CheM, 2020, 6, 1046-1048.	11.7	11
26	A Threeâ€Dimensional Porous Organic Semiconductor Based on Fully sp ² â€Hybridized Graphitic Polymer. Angewandte Chemie - International Edition, 2020, 59, 15166-15170.	13.8	29
27	A Threeâ€Dimensional Porous Organic Semiconductor Based on Fully sp ² â€Hybridized Graphitic Polymer. Angewandte Chemie, 2020, 132, 15278-15282.	2.0	12
28	Covalent Triazine Frameworks Incorporating Charged Polypyrrole Channels for High-Performance Lithium–Sulfur Batteries. Chemistry of Materials, 2020, 32, 4185-4193.	6.7	55
29	Tailor-made Functional Polymers for Energy Storage and Environmental Applications. Chimia, 2020, 74, 667.	0.6	0
30	Frontispiece: Advances in Porous Organic Polymers for Efficient Water Capture. Chemistry - A European Journal, 2019, 25, .	3.3	0
31	Lithiumâ€5alt Mediated Synthesis of a Covalent Triazine Framework for Highly Stable Lithium Metal Batteries. Angewandte Chemie, 2019, 131, 16951-16955.	2.0	26
32	Lithiumâ€ 5 alt Mediated Synthesis of a Covalent Triazine Framework for Highly Stable Lithium Metal Batteries. Angewandte Chemie - International Edition, 2019, 58, 16795-16799.	13.8	72
33	A Pyrene–Poly(acrylic acid)–Polyrotaxane Supramolecular Binder Network for Highâ€Performance Silicon Negative Electrodes. Advanced Materials, 2019, 31, e1905048.	21.0	77
34	Highly Elastic Polyrotaxane Binders for Mechanically Stable Lithium Hosts in Lithiumâ€Metal Batteries. Advanced Materials, 2019, 31, e1901645.	21.0	68
35	Advances in Porous Organic Polymers for Efficient Water Capture. Chemistry - A European Journal, 2019, 25, 10262-10283.	3.3	82
36	Prospect for Supramolecular Chemistry in High-Energy-Density Rechargeable Batteries. Joule, 2019, 3, 662-682.	24.0	66

Αιι CoÅΫκυΝ

#	Article	IF	CITATIONS
37	Dyeing Your Hair withÂGraphene. CheM, 2018, 4, 661-663.	11.7	4
38	Epoxyâ€Functionalized Porous Organic Polymers via the Diels–Alder Cycloaddition Reaction for Atmospheric Water Capture. Angewandte Chemie - International Edition, 2018, 57, 3173-3177.	13.8	46
39	The emerging era of supramolecular polymeric binders in silicon anodes. Chemical Society Reviews, 2018, 47, 2145-2164.	38.1	341
40	Epoxyâ€Functionalized Porous Organic Polymers via the Diels–Alder Cycloaddition Reaction for Atmospheric Water Capture. Angewandte Chemie, 2018, 130, 3227-3231.	2.0	12
41	Bimetallic metal organic frameworks with precisely positioned metal centers for efficient H ₂ storage. Chemical Communications, 2018, 54, 12218-12221.	4.1	20
42	The Power of the Mechanical Bond. CheM, 2018, 4, 2260-2262.	11.7	3
43	A Facile and Scalable Route to the Preparation of Catalytic Membranes with in Situ Synthesized Supramolecular Dendrimer Particle Hosts for Pt(0) Nanoparticles Using a Low-Generation PAMAM Dendrimer (G1-NH2) as Precursor. ACS Applied Materials & Interfaces, 2018, 10, 33238-33251.	8.0	9
44	Energy Band-Gap Engineering of Conjugated Microporous Polymers via Acidity-Dependent in Situ Cyclization. Journal of the American Chemical Society, 2018, 140, 10937-10940.	13.7	57
45	Edge-Functionalized Graphene Nanoribbon Frameworks for the Capture and Separation of Greenhouse Gases. Macromolecules, 2017, 50, 523-533.	4.8	13
46	Nanostructured ZnO as a structural template for the growth of ZIF-8 with tunable hierarchical porosity for CO ₂ conversion. CrystEngComm, 2017, 19, 4147-4151.	2.6	21
47	Charged Covalent Triazine Frameworks for CO ₂ Capture and Conversion. ACS Applied Materials & Interfaces, 2017, 9, 7209-7216.	8.0	270
48	Highly Hydrophobic ZIFâ€8/Carbon Nitride Foam with Hierarchical Porosity for Oil Capture and Chemical Fixation of CO ₂ . Advanced Functional Materials, 2017, 27, 1700706.	14.9	119
49	Transition metal complex directed synthesis of porous cationic polymers for efficient CO2 capture and conversion. Polymer, 2017, 126, 296-302.	3.8	15
50	Bottom-up synthesis of fully sp ² hybridized three-dimensional microporous graphitic frameworks as metal-free catalysts. Journal of Materials Chemistry A, 2017, 5, 12080-12085.	10.3	44
51	Templateâ€Directed Approach Towards the Realization of Ordered Heterogeneity in Bimetallic Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2017, 56, 5071-5076.	13.8	55
52	Templateâ€Ðirected Approach Towards the Realization of Ordered Heterogeneity in Bimetallic Metal–Organic Frameworks. Angewandte Chemie, 2017, 129, 5153-5158.	2.0	8
53	Perfluoroarylâ€Elemental Sulfur S _N Ar Chemistry in Covalent Triazine Frameworks with High Sulfur Contents for Lithium–Sulfur Batteries. Advanced Functional Materials, 2017, 27, 1703947.	14.9	158
54	Selection of Binder and Solvent for Solution-Processed All-Solid-State Battery. Journal of the Electrochemical Society, 2017, 164, A2075-A2081.	2.9	122

Αιι CoÅΫκυν

#	Article	IF	CITATIONS
55	Chemically Activated Covalent Triazine Frameworks with Enhanced Textural Properties for High Capacity Gas Storage. ACS Applied Materials & Interfaces, 2017, 9, 30679-30685.	8.0	65
56	Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science, 2017, 357, 279-283.	12.6	943
57	Chemical Blowing Approach for Ultramicroporous Carbon Nitride Frameworks and Their Applications in Gas and Energy Storage. Advanced Functional Materials, 2017, 27, 1604658.	14.9	92
58	Elementalâ€Sulfurâ€Mediated Facile Synthesis of a Covalent Triazine Framework for Highâ€Performance Lithium–Sulfur Batteries. Angewandte Chemie, 2016, 128, 3158-3163.	2.0	96
59	Elementalâ€Sulfurâ€Mediated Facile Synthesis of a Covalent Triazine Framework for Highâ€Performance Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2016, 55, 3106-3111.	13.8	308
60	Graphene/ZIF-8 composites with tunable hierarchical porosity and electrical conductivity. Journal of Materials Chemistry A, 2016, 4, 7710-7717.	10.3	117
61	Direct Utilization of Elemental Sulfur in the Synthesis of Microporous Polymers for Natural Gas Sweetening. CheM, 2016, 1, 482-493.	11.7	46
62	Synthesis of Highly Porous Coordination Polymers with Open Metal Sites for Enhanced Gas Uptake and Separation. ACS Applied Materials & Interfaces, 2016, 8, 26860-26867.	8.0	46
63	Diazapyrenium-based porous cationic polymers for colorimetric amine sensing and capture from CO ₂ scrubbing conditions. RSC Advances, 2016, 6, 77406-77409.	3.6	19
64	Rational Sulfur Cathode Design for Lithium–Sulfur Batteries: Sulfur-Embedded Benzoxazine Polymers. ACS Energy Letters, 2016, 1, 566-572.	17.4	107
65	Pillar[5]arene Based Conjugated Microporous Polymers for Propane/Methane Separation through Host–Guest Complexation. Chemistry of Materials, 2016, 28, 4460-4466.	6.7	147
66	Porous cationic polymers: the impact of counteranions and charges on CO ₂ capture and conversion. Chemical Communications, 2016, 52, 934-937.	4.1	162
67	Graphene oxide-templated preferential growth of continuous MOF thin films. CrystEngComm, 2016, 18, 4013-4017.	2.6	18
68	Systematic Investigation of the Effect of Polymerization Routes on the Gasâ€Sorption Properties of Nanoporous Azobenzene Polymers. Chemistry - A European Journal, 2015, 21, 15320-15327.	3.3	34
69	Thinking Outside the Cage: Controlling the Extrinsic Porosity and Gas Uptake Properties of Shape-Persistent Molecular Cages in Nanoporous Polymers. Chemistry of Materials, 2015, 27, 4149-4155.	6.7	60
70	Millipede-inspired structural design principle for high performance polysaccharide binders in silicon anodes. Energy and Environmental Science, 2015, 8, 1224-1230.	30.8	222
71	Electron Injection from Copper Diimine Sensitizers into TiO ₂ : Structural Effects and Their Implications for Solar Energy Conversion Devices. Journal of the American Chemical Society, 2015, 137, 9670-9684.	13.7	60
72	Bottom-up Approach for the Synthesis of a Three-Dimensional Nanoporous Graphene Nanoribbon Framework and Its Gas Sorption Properties. Chemistry of Materials, 2015, 27, 2576-2583.	6.7	37

Αιι CoÅΫκυΝ

#	Article	IF	CITATIONS
73	Catalystâ€Free Synthesis of Porous Graphene Networks as Efficient Sorbents for CO ₂ and H ₂ . ChemPlusChem, 2015, 80, 1127-1132.	2.8	7
74	Dynamic Cross-Linking of Polymeric Binders Based on Host–Guest Interactions for Silicon Anodes in Lithium Ion Batteries. ACS Nano, 2015, 9, 11317-11324.	14.6	167
75	Nanoporous Polymers Incorporating Sterically Confined <i>N</i> -Heterocyclic Carbenes for Simultaneous CO ₂ Capture and Conversion at Ambient Pressure. Chemistry of Materials, 2015, 27, 6818-6826.	6.7	116
76	Ordered Supramolecular Gels Based on Graphene Oxide and Tetracationic Cyclophanes. Advanced Materials, 2014, 26, 2725-2729.	21.0	25
77	Systematic Molecularâ€Level Design of Binders Incorporating Meldrum's Acid for Silicon Anodes in Lithium Rechargeable Batteries. Advanced Materials, 2014, 26, 7979-7985.	21.0	155
78	Hyperbranched β-Cyclodextrin Polymer as an Effective Multidimensional Binder for Silicon Anodes in Lithium Rechargeable Batteries. Nano Letters, 2014, 14, 864-870.	9.1	277
79	Directing the Structural Features of N ₂ â€Phobic Nanoporous Covalent Organic Polymers for CO ₂ Capture and Separation. Chemistry - A European Journal, 2014, 20, 772-780.	3.3	128
80	Nanoporous covalent organic polymers incorporating Tröger's base functionalities for enhanced CO ₂ capture. Journal of Materials Chemistry A, 2014, 2, 12507.	10.3	90
81	An Aqueous Sodium Ion Hybrid Battery Incorporating an Organic Compound and a Prussian Blue Derivative. Advanced Energy Materials, 2014, 4, 1400133.	19.5	106
82	Ground-State Kinetics of Bistable Redox-Active Donor–Acceptor Mechanically Interlocked Molecules. Accounts of Chemical Research, 2014, 47, 482-493.	15.6	107
83	A bifunctional approach for the preparation of graphene and ionic liquid-based hybrid gels. Journal of Materials Chemistry A, 2013, 1, 43-48.	10.3	32
84	Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers. Nature Communications, 2013, 4, 1357.	12.8	456
85	Redox-Controlled Selective Docking in a [2]Catenane Host. Journal of the American Chemical Society, 2013, 135, 2466-2469.	13.7	27
86	Threeâ€Ðimensional Architectures Incorporating Stereoregular Donor–Acceptor Stacks. Chemistry - A European Journal, 2013, 19, 8457-8465.	3.3	28
87	Electronic and Optical Vibrational Spectroscopy of Molecular Transport Junctions Created by Onâ€Wire Lithography. Small, 2013, 9, 1900-1903.	10.0	10
88	Highly Efficient Ultrafast Electron Injection from the Singlet MLCT Excited State of Copper(I) Diimine Complexes to TiO ₂ Nanoparticles. Angewandte Chemie - International Edition, 2012, 51, 12711-12715.	13.8	85
89	Effect of N-substitution in naphthalenediimides on the electrochemical performance of organic rechargeable batteries. RSC Advances, 2012, 2, 7968.	3.6	76
90	Solution-Phase Mechanistic Study and Solid-State Structure of a Tris(bipyridinium radical cation) Inclusion Complex. Journal of the American Chemical Society, 2012, 134, 3061-3072.	13.7	123

Αιι CoÅΫκυΝ

#	Article	IF	CITATIONS
91	High hopes: can molecular electronics realise its potential?. Chemical Society Reviews, 2012, 41, 4827.	38.1	277
92	Mechanically Interlocked Molecules Assembled by ï€â€"ï€â€Recognition. ChemPlusChem, 2012, 77, 159-185.	2.8	100
93	Great expectations: can artificial molecular machines deliver on their promise?. Chemical Society Reviews, 2012, 41, 19-30.	38.1	796
94	Photoinduced Memory Effect in a Redox Controllable Bistable Mechanical Molecular Switch. Angewandte Chemie - International Edition, 2012, 51, 1611-1615.	13.8	119
95	Metal–Organic Frameworks Incorporating Copperâ€Complexed Rotaxanes. Angewandte Chemie - International Edition, 2012, 51, 2160-2163.	13.8	105
96	A redox-active reverse donor–acceptor bistable [2]rotaxane. Chemical Science, 2011, 2, 1046-1053.	7.4	58
97	Mechanically Stabilized Tetrathiafulvalene Radical Dimers. Journal of the American Chemical Society, 2011, 133, 4538-4547.	13.7	114
98	Innentitelbild: A Light-Stimulated Molecular Switch Driven by Radical-Radical Interactions in Water (Angew. Chem. 30/2011). Angewandte Chemie, 2011, 123, 6804-6804.	2.0	0
99	Imprinting Chemical and Responsive Micropatterns into Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2011, 50, 276-279.	13.8	68
100	A Lightâ€Stimulated Molecular Switch Driven by Radical–Radical Interactions in Water. Angewandte Chemie - International Edition, 2011, 50, 6782-6788.	13.8	127
101	Inside Cover: A Light-Stimulated Molecular Switch Driven by Radical-Radical Interactions in Water (Angew. Chem. Int. Ed. 30/2011). Angewandte Chemie - International Edition, 2011, 50, 6674-6674.	13.8	3
102	Donor–Acceptor Oligorotaxanes Made to Order. Chemistry - A European Journal, 2011, 17, 2107-2119.	3.3	53
103	A Multistate Switchable [3]Rotacatenane. Chemistry - A European Journal, 2011, 17, 213-222.	3.3	56
104	Excited state distortions in a charge transfer state of a donor–acceptor [2]rotaxane. Physical Chemistry Chemical Physics, 2010, 12, 14135.	2.8	10
105	Polycatenation under Thermodynamic Control. Angewandte Chemie - International Edition, 2010, 49, 3151-3156.	13.8	38
106	Highly stable tetrathiafulvalene radical dimers in [3]catenanes. Nature Chemistry, 2010, 2, 870-879.	13.6	171
107	Molecular-Mechanical Switching at the Nanoparticleâ^'Solvent Interface: Practice and Theory. Journal of the American Chemical Society, 2010, 132, 4310-4320.	13.7	61
108	Chromatography in a Single Metalâ^'Organic Framework (MOF) Crystal. Journal of the American Chemical Society, 2010, 132, 16358-16361.	13.7	192

ΑLΙ COÅΫκυΝ

#	Article	IF	CITATIONS
109	Dynamic hook-and-eye nanoparticle sponges. Nature Chemistry, 2009, 1, 733-738.	13.6	114
110	Metal Nanoparticles Functionalized with Molecular and Supramolecular Switches. Journal of the American Chemical Society, 2009, 131, 4233-4235.	13.7	119
111	Design Strategies for Ratiometric Chemosensors: Modulation of Excitation Energy Transfer at the Energy Donor Site. Journal of the American Chemical Society, 2009, 131, 9007-9013.	13.7	207
112	A Light-Gated STOPâ^'GO Molecular Shuttle. Journal of the American Chemical Society, 2009, 131, 2493-2495.	13.7	125
113	Assembly of Polygonal Nanoparticle Clusters Directed by Reversible Noncovalent Bonding Interactions. Nano Letters, 2009, 9, 3185-3190.	9.1	82
114	Enzyme-Responsive Snap-Top Covered Silica Nanocontainers. Journal of the American Chemical Society, 2008, 130, 2382-2383.	13.7	567
115	A Reverse Donor-Acceptor Bistable [2]Catenane. Organic Letters, 2008, 10, 3187-3190.	4.6	54
116	Bis(2-pyridyl)-Substituted Boratriazaindacene as an NIR-Emitting Chemosensor for Hg(II). Organic Letters, 2007, 9, 607-609.	4.6	235
117	A sensitive fluorescent chemosensor for anions based on a styryl–boradiazaindacene framework. Tetrahedron Letters, 2007, 48, 5359-5361.	1.4	20
118	Signal Ratio Amplification via Modulation of Resonance Energy Transfer:  Proof of Principle in an Emission Ratiometric Hg(II) Sensor. Journal of the American Chemical Society, 2006, 128, 14474-14475.	13.7	387
119	An acenaphthopyrrolone-dipicolylamine derivative as a selective and sensitive chemosensor for group IIB cations. Tetrahedron Letters, 2006, 47, 3689-3691.	1.4	7
120	Cation modulation of carbonyldipyrrinone (CDP) fluorescence: emission-ratiometric sensing of calcium. Journal of Materials Chemistry, 2005, 15, 2908.	6.7	13
121	Effective PET and ICT Switching of Boradiazaindacene Emission:  A Unimolecular, Emission-Mode, Molecular Half-Subtractor with Reconfigurable Logic Gates. Organic Letters, 2005, 7, 5187-5189.	4.6	276
122	Ion Sensing Coupled to Resonance Energy Transfer:Â A Highly Selective and Sensitive Ratiometric Fluorescent Chemosensor for Ag(I) by a Modular Approach. Journal of the American Chemical Society, 2005, 127, 10464-10465.	13.7	398
123	Difluorobora-s-diazaindacene dyes as highly selective dosimetric reagents for fluoride anions. Tetrahedron Letters, 2004, 45, 4947-4949.	1.4	92
124	Three-Point Recognition and Selective Fluorescence Sensing ofl-DOPA. Organic Letters, 2004, 6, 3107-3109.	4.6	45
125	Novel fluorescent chemosensor for anions via modulation of oxidative PET: a remarkable 25-fold enhancement of emission. Tetrahedron Letters, 2003, 44, 5649-5651.	1.4	57
126	Postfunctionalized Covalent Organic Frameworks for Water Harvesting. ACS Central Science, 0, , .	11.3	8