Weiyang Qin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4674197/publications.pdf Version: 2024-02-01

WEIVANC OIN

#	Article	IF	CITATIONS
1	Hybrid vibration energy harvesting based on piezoelectric polyline beams with electret coupling. Journal of Intelligent Material Systems and Structures, 2022, 33, 319-329.	2.5	5
2	Mechanical Shunt Resonators-Based Piezoelectric Metamaterial for Elastic Wave Attenuation. Materials, 2022, 15, 891.	2.9	5
3	Improve harvesting efficiency of tri-stable energy harvester by tailoring potential energy. European Physical Journal Plus, 2022, 137, 1.	2.6	2
4	Improving Energy Harvesting from Bridge Vibration Excited by Moving Vehicles with a Bi-Stable Harvester. Materials, 2022, 15, 2237.	2.9	1
5	Harvesting Energy from Bridge Vibration by Piezoelectric Structure with Magnets Tailoring Potential Energy. Materials, 2022, 15, 33.	2.9	4
6	Nonlinear vibration energy harvesting and vibration suppression technologies: Designs, analysis, and applications. Applied Physics Reviews, 2021, 8, .	11.3	95
7	Investigation on the transient response of a speed-varying rotor with sudden unbalance and its application in the unbalance identification. Journal of Low Frequency Noise Vibration and Active Control, 2020, 39, 1065-1086.	2.9	12
8	Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices. Biosensors and Bioelectronics, 2020, 168, 112569.	10.1	225
9	Harvesting Variable-Speed Wind Energy with a Dynamic Multi-Stable Configuration. Materials, 2020, 13, 1389.	2.9	5
10	Improving energy harvesting from random excitation by nonlinear flexible bi-stable energy harvester with a variable potential energy function. Mechanical Systems and Signal Processing, 2019, 115, 162-172.	8.0	86
11	Scavenging wind energy by a dynamic-stable flutter energy harvester with rectangular wing. Applied Physics Letters, 2019, 114, .	3.3	52
12	Transfer Printing and its Applications in Flexible Electronic Devices. Nanomaterials, 2019, 9, 283.	4.1	78
13	Nonlinear dynamics of a pendulum-beam coupling piezoelectric energy harvesting system. European Physical Journal Plus, 2019, 134, 1.	2.6	3
14	Scavenging wind energy by a Y-shaped bi-stable energy harvester with curved wings. Energy, 2018, 153, 400-412.	8.8	67
15	Magnetically coupled dual-beam energy harvester: Benefit and trade-off. Journal of Intelligent Material Systems and Structures, 2018, 29, 1216-1235.	2.5	53
16	Coherence resonance of a magnet-induced buckled piezoelectric energy harvester under stochastic parametric excitation. Journal of Intelligent Material Systems and Structures, 2018, 29, 1620-1631.	2.5	7
17	Dynamic response analysis of an overhung rotor with interval uncertainties. Nonlinear Dynamics, 2017, 89, 2115-2124.	5.2	35
18	Improving efficiency of energy harvesting by a novel penta-stable configuration. Sensors and Actuators A: Physical, 2017, 265, 297-305.	4.1	51

WEIYANG QIN

#	Article	IF	CITATIONS
19	Theoretical and experimental studies on the characteristics of a tri-stable piezoelectric harvester. Archive of Applied Mechanics, 2017, 87, 1541-1554.	2.2	23
20	Enhancing ability of harvesting energy from random vibration by decreasing the potential barrier of bistable harvester. Mechanical Systems and Signal Processing, 2017, 85, 71-81.	8.0	129
21	Improving energy harvesting in a tri-stable piezomagnetoelastic beam with two attractive external magnets subjected to random excitation. Archive of Applied Mechanics, 2017, 87, 45-57.	2.2	26
22	Obtaining high-energy responses of nonlinear piezoelectric energy harvester by voltage impulse perturbations. EPJ Applied Physics, 2017, 79, 20902.	0.7	41
23	Distributed parameter model and experimental validation of a compressive-mode energy harvester under harmonic excitations. AIP Advances, 2016, 6, 085310.	1.3	8
24	Investigation of snap-through and homoclinic bifurcation of a magnet-induced buckled energy harvester by the Melnikov method. Chaos, 2016, 26, 123109.	2.5	6
25	Improve efficiency of harvesting random energy by snap-through in a quad-stable harvester. Sensors and Actuators A: Physical, 2016, 243, 151-158.	4.1	62
26	Improving energy harvesting by stochastic resonance in a laminated bistable beam. European Physical Journal Plus, 2016, 131, 1.	2.6	28
27	Dynamics and coherence resonance of a laminated piezoelectric beam for energy harvesting. Nonlinear Dynamics, 2015, 81, 1751-1757.	5.2	30
28	Energy harvesting by dynamic unstability and internal resonance for piezoelectric beam. Applied Physics Letters, 2015, 107, .	3.3	69
29	Energy harvesting from coherent resonance of horizontal vibration of beam excited by vertical base motion. Applied Physics Letters, 2014, 105, 113901.	3.3	18
30	Stability for Discrete Hopfield Neural Networks with Delay. , 2008, , .		0
31	Grazing Bifurcation in the Response of Cracked Jeffcott Rotor. Nonlinear Dynamics, 2004, 35, 147-157.	5.2	24