Uwe Wolfrum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4672743/publications.pdf

Version: 2024-02-01

140

all docs

129 9,434 48
papers citations h-index

citations h-index g-index

140 140 10980
docs citations times ranked citing authors

89

#	Article	IF	CITATIONS
1	The ARF GAPs ELMOD1 and ELMOD3 act at the Golgi and cilia to regulate ciliogenesis and ciliary protein traffic. Molecular Biology of the Cell, 2022, 33, mbcE21090443.	2.1	5
2	Early disruption of photoreceptor cell architecture and loss of vision in a humanized pig model of usher syndromes. EMBO Molecular Medicine, 2022, 14, e14817.	6.9	14
3	Phylogenetic profiling and cellular analyses of ARL16 reveal roles in traffic of IFT140 and INPP5E. Molecular Biology of the Cell, 2022, 33, mbcE21100509T.	2.1	10
4	Affinity Proteomics Identifies Interaction Partners and Defines Novel Insights into the Function of the Adhesion GPCR VLGR1/ADGRV1. Molecules, 2022, 27, 3108.	3.8	8
5	Autophagy interferes with human cytomegalovirus genome replication, morphogenesis, and progeny release. Autophagy, 2021, 17, 779-795.	9.1	18
6	A new mouse model for retinal degeneration due to Fam161a deficiency. Scientific Reports, 2021, 11, 2030.	3.3	17
7	Adhesion G protein-coupled receptor VLGR1/ADGRV1 regulates cell spreading and migration by mechanosensing at focal adhesions. IScience, 2021, 24, 102283.	4.1	20
8	Roles for ELMOD2 and Rootletin in ciliogenesis. Molecular Biology of the Cell, 2021, 32, 800-822.	2.1	20
9	SANS (USH1G) regulates pre-mRNA splicing by mediating the intra-nuclear transfer of tri-snRNP complexes. Nucleic Acids Research, 2021, 49, 5845-5866.	14.5	16
10	Isolation and culturing of primary mouse astrocytes for the analysis of focal adhesion dynamics. STAR Protocols, 2021, 2, 100954.	1.2	13
11	Occurrence of Retinal Ganglion Cell Loss via Autophagy and Apoptotic Pathways in an Autoimmune Glaucoma Model. Current Eye Research, 2020, 45, 1124-1135.	1.5	11
12	PCARE and WASF3 regulate ciliary F-actin assembly that is required for the initiation of photoreceptor outer segment disk formation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9922-9931.	7.1	58
13	PRCD is Concentrated at the Base of Photoreceptor Outer Segments and is Involved in Outer Segment Disc Formation. Human Molecular Genetics, 2019, 28, 4078-4088.	2.9	10
14	Tackling the Limitations of Copolymeric Small Interfering RNA Delivery Agents by a Combined Experimental–Computational Approach. Biomacromolecules, 2019, 20, 4389-4406.	5.4	7
15	Affinity proteomics identifies novel functional modules related to adhesion GPCRs. Annals of the New York Academy of Sciences, 2019, 1456, 144-167.	3.8	11
16	SANS (USH1G) Molecularly Links the Human Usher Syndrome Protein Network to the Intraflagellar Transport Module by Direct Binding to IFT-B Proteins. Frontiers in Cell and Developmental Biology, 2019, 7, 216.	3.7	8
17	The expanding functional roles and signaling mechanisms of adhesion G protein–coupled receptors. Annals of the New York Academy of Sciences, 2019, 1456, 5-25.	3.8	16
18	CiliaCarta: An integrated and validated compendium of ciliary genes. PLoS ONE, 2019, 14, e0216705.	2.5	104

#	Article	IF	CITATIONS
19	Enhanced autophagic-lysosomal activity and increased BAG3-mediated selective macroautophagy as adaptive response of neuronal cells to chronic oxidative stress. Redox Biology, 2019, 24, 101181.	9.0	25
20	The Abundant Tegument Protein pUL25 of Human Cytomegalovirus Prevents Proteasomal Degradation of pUL26 and Supports Its Suppression of ISGylation. Journal of Virology, 2018, 92, .	3.4	19
21	Usherin defects lead to early-onset retinal dysfunction in zebrafish. Experimental Eye Research, 2018, 173, 148-159.	2.6	53
22	Cilia - The sensory antennae in the eye. Progress in Retinal and Eye Research, 2017, 60, 144-180.	15.5	133
23	Characterization of the ternary Usher syndrome SANS/ush2a/whirlin protein complex. Human Molecular Genetics, 2017, 26, ddx027.	2.9	41
24	Deep Sequencing of the Human Retinae Reveals the Expression of Odorant Receptors. Frontiers in Cellular Neuroscience, 2017, 11, 03.	3.7	18
25	Novel Insights Into the Phenotypical Spectrum of <i>KIF11</i> -Associated Retinopathy, Including a New Form of Retinal Ciliopathy., 2017, 58, 3950.		48
26	Adenovirus E1A/E1B Transformed Amniotic Fluid Cells Support Human Cytomegalovirus Replication. Viruses, 2016, 8, 37.	3.3	11
27	AAV-Mediated Clarin-1 Expression in the Mouse Retina: Implications for USH3A Gene Therapy. PLoS ONE, 2016, 11, e0148874.	2.5	10
28	PEX6 is Expressed in Photoreceptor Cilia and Mutated in Deafblindness with Enamel Dysplasia and Microcephaly. Human Mutation, 2016, 37, 170-174.	2.5	36
29	Peripherin-2 differentially interacts with cone opsins in outer segments of cone photoreceptors. Human Molecular Genetics, 2016, 25, ddw103.	2.9	10
30	A FRAP-Based Method for Monitoring Molecular Transport in Ciliary Photoreceptor Cells In Vivo. Methods in Molecular Biology, 2016, 1454, 97-106.	0.9	0
31	Adhesion GPCR-Related Protein Networks. Handbook of Experimental Pharmacology, 2016, 234, 147-178.	1.8	19
32	An organelle-specific protein landscape identifies novel diseases and molecular mechanisms. Nature Communications, 2016, 7, 11491.	12.8	207
33	Impact of the Usher syndrome on olfaction. Human Molecular Genetics, 2016, 25, 524-533.	2.9	19
34	Targeting Nonsense Mutations in Diseases with Translational Read-Through-Inducing Drugs (TRIDs). BioDrugs, 2016, 30, 49-74.	4.6	82
35	<i>Pgc-1α</i> and <i>Nr4a1</i> Are Target Genes of Circadian Melatonin and Dopamine Release in Murine Retina., 2015, 56, 6084.		26
36	The GTP- and Phospholipid-Binding Protein TTD14 Regulates Trafficking of the TRPL Ion Channel in Drosophila Photoreceptor Cells. PLoS Genetics, 2015, 11, e1005578.	3.5	7

#	Article	IF	CITATIONS
37	Efficient gene delivery to photoreceptors using AAV2/rh10 and rescue of the Rhoâ^'/â^' mouse. Molecular Therapy - Methods and Clinical Development, 2015, 2, 15016.	4.1	22
38	A novel function of Huntingtin in the cilium and retinal ciliopathy in Huntington's disease mice. Neurobiology of Disease, 2015, 80, 15-28.	4.4	31
39	Deletion of myosin VI causes slow retinal optic neuropathy and age-related macular degeneration (AMD)-relevant retinal phenotype. Cellular and Molecular Life Sciences, 2015, 72, 3953-3969.	5.4	10
40	<i>C21orf2</i> is mutated in recessive early-onset retinal dystrophy with macular staphyloma and encodes a protein that localises to the photoreceptor primary cilium. British Journal of Ophthalmology, 2015, 99, 1725-1731.	3.9	32
41	KIAA0556 is a novel ciliary basal body component mutated in Joubert syndrome. Genome Biology, 2015, 16, 293.	8.8	56
42	International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G Protein–Coupled Receptors. Pharmacological Reviews, 2015, 67, 338-367.	16.0	392
43	Translational read-through of the RP2 Arg120stop mutation in patient iPSC-derived retinal pigment epithelium cells. Human Molecular Genetics, 2015, 24, 972-986.	2.9	97
44	CEP63 deficiency promotes p53-dependent microcephaly and reveals a role for the centrosome in meiotic recombination. Nature Communications, 2015, 6, 7676.	12.8	96
45	An siRNA-based functional genomics screen for theÂidentification of regulators of ciliogenesis and ciliopathyÂgenes. Nature Cell Biology, 2015, 17, 1074-1087.	10.3	215
46	The Leber Congenital Amaurosis Protein AIPL1 and EB Proteins Co-Localize at the Photoreceptor Cilium. PLoS ONE, 2015, 10, e0121440.	2.5	8
47	TALPID3 controls centrosome and cell polarity and the human ortholog KIAA0586 is mutated in Joubert syndrome (JBTS23). ELife, 2015, 4, .	6.0	51
48	Photoreceptor cells display a daily rhythm in the orphan receptor Esrr \hat{l}^2 . Molecular Vision, 2015, 21, 173-84.	1.1	3
49	A Homozygous Mutation in the <i><scp>TUB</scp></i> Gene Associated with Retinal Dystrophy and Obesity. Human Mutation, 2014, 35, 289-293.	2.5	63
50	Translational read-through as an alternative approach for ocular gene therapy of retinal dystrophies caused by in-frame nonsense mutations. Visual Neuroscience, 2014, 31, 309-316.	1.0	22
51	Phosphorylation of the Usher syndrome 1G protein SANS controls Magi2-mediated endocytosis. Human Molecular Genetics, 2014, 23, 3923-3942.	2.9	28
52	Disruption of the retinitis pigmentosa 28 gene Fam161a in mice affects photoreceptor ciliary structure and leads to progressive retinal degeneration. Human Molecular Genetics, 2014, 23, 5197-5210.	2.9	59
53	Mutation of <i>POC1B </i> ii a Severe Syndromic Retinal Ciliopathy. Human Mutation, 2014, 35, 1153-1162.	2.5	57
54	Peripherin-2 couples rhodopsin to the CNG channel in outer segments of rod photoreceptors. Human Molecular Genetics, 2014, 23, 5989-5997.	2.9	23

#	Article	IF	Citations
55	Biallelic Variants in TTLL5, Encoding a Tubulin Glutamylase, Cause Retinal Dystrophy. American Journal of Human Genetics, 2014, 94, 760-769.	6.2	67
56	Usher Syndrome Protein Network Functions in the Retina and their Relation to Other Retinal Ciliopathies. Advances in Experimental Medicine and Biology, 2014, 801, 527-533.	1.6	35
57	Mutations in ARL2BP, Encoding ADP-Ribosylation-Factor-Like 2 Binding Protein, Cause Autosomal-Recessive Retinitis Pigmentosa. American Journal of Human Genetics, 2013, 93, 321-329.	6.2	67
58	Germline deletion of <i>Cetn1</i> causes infertility in male mice. Journal of Cell Science, 2013, 126, 3204-13.	2.0	39
59	Light-dependent phosphorylation of Bardet–Biedl syndrome 5 in photoreceptor cells modulates its interaction with arrestin1. Cellular and Molecular Life Sciences, 2013, 70, 4603-4616.	5.4	29
60	Septins 2, 7, and 9 and MAP4 co-localize along the axoneme in the primary cilium and control ciliary length. Journal of Cell Science, 2013, 126, 2583-94.	2.0	108
61	The giant spectrin \hat{I}^2V couples the molecular motors to phototransduction and Usher syndrome type I proteins along their trafficking route. Human Molecular Genetics, 2013, 22, 3773-3788.	2.9	48
62	Successful Subretinal Delivery and Monitoring of MicroBeads in Mice. PLoS ONE, 2013, 8, e55173.	2.5	11
63	A comparative evaluation of NB30, NB54 and PTC124 in translational readâ€through efficacy for treatment of an ⟨i⟩USH1C⟨ i⟩ nonsense mutation. EMBO Molecular Medicine, 2012, 4, 1186-1199.	6.9	95
64	Multifunctional superparamagnetic MnO@SiO2 core/shell nanoparticles and their application for optical and magnetic resonance imaging. Journal of Materials Chemistry, 2012, 22, 9253.	6.7	59
65	Gene Repair of an Usher Syndrome Causing Mutation by Zinc-Finger Nuclease Mediated Homologous Recombination. , 2012, 53, 4140.		41
66	The retinitis pigmentosa 28 protein FAM161A is a novel ciliary protein involved in intermolecular protein interaction and microtubule association. Human Molecular Genetics, 2012, 21, 4573-4586.	2.9	50
67	The mitotic spindle protein SPAG5/Astrin connects to the Usher protein network postmitotically. Cilia, 2012, 1, 2.	1.8	18
68	Intraflagellar transport proteins in ciliogenesis of photoreceptor cells. Biology of the Cell, 2011, 103, 449-466.	2.0	60
69	BAG3 mediates chaperoneâ€based aggresomeâ€targeting and selective autophagy of misfolded proteins. EMBO Reports, 2011, 12, 149-156.	4.5	316
70	Direct interaction of the Usher syndrome 1G protein SANS and myomegalin in the retina. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1883-1892.	4.1	43
71	TOPORS, implicated in retinal degeneration, is a cilia-centrosomal protein. Human Molecular Genetics, 2011, 20, 975-987.	2.9	49
72	Suppression and Replacement Gene Therapy for Autosomal Dominant Disease in a Murine Model of Dominant Retinitis Pigmentosa. Molecular Therapy, 2011, 19, 642-649.	8.2	134

#	Article	IF	CITATIONS
73	Polyglutamine toxicity induces rod photoreceptor division, morphological transformation or death in Spinocerebellar ataxia 7 mouse retina. Neurobiology of Disease, 2010, 40, 311-324.	4.4	20
74	Light-dependent translocation of arrestin in rod photoreceptors is signaled through a phospholipase C cascade and requires ATP. Cellular Signalling, 2010, 22, 447-456.	3.6	37
75	Beneficial Read-Through of a <i>USH1C</i> Nonsense Mutation by Designed Aminoglycoside NB30 in the Retina., 2010, 51, 6671.		50
76	Association of Whirlin with Ca $<$ sub $>vsub>1.3 (Î\pm <sub>1Dsub>) Channels in Photoreceptors, Defining a Novel Member of the Usher Protein Network. , 2010, 51, 2338.$		52
77	The retinitis pigmentosa protein RP2 links pericentriolar vesicle transport between the Golgi and the primary cilium. Human Molecular Genetics, 2010, 19, 1358-1367.	2.9	124
78	Intraflagellar transport molecules in ciliary and nonciliary cells of the retina. Journal of Cell Biology, 2010, 189, 171-186.	5.2	128
79	Optimized recombinant dense bodies of human cytomegalovirus efficiently prime virus specific lymphocytes and neutralizing antibodies without the addition of adjuvant. Vaccine, 2010, 28, 6191-6198.	3.8	23
80	Effects of Presynaptic Mutations on a Postsynaptic Cacnals Calcium Channel Colocalized with mGluR6 at Mouse Photoreceptor Ribbon Synapses., 2009, 50, 505.		95
81	Usher syndrome and Leber congenital amaurosis are molecularly linked via a novel isoform of the centrosomal ninein-like protein. Human Molecular Genetics, 2009, 18, 51-64.	2.9	43
82	Homozygous disruption of PDZD7 by reciprocal translocation in a consanguineous family: a new member of the Usher syndrome protein interactome causing congenital hearing impairment. Human Molecular Genetics, 2009, 18, 655-666.	2.9	48
83	Different roles for KIF17 and kinesin II in photoreceptor development and maintenance. Developmental Dynamics, 2009, 238, 2211-2222.	1.8	53
84	Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. EMBO Journal, 2009, 28, 889-901.	7.8	465
85	Immunoelectron Microscopy of Vesicle Transport to the Primary Cilium of Photoreceptor Cells. Methods in Cell Biology, 2009, 94, 259-272.	1.1	26
86	Expression of cadherin 23 isoforms is not conserved: implications for a mouse model of Usher syndrome type 1D. Molecular Vision, 2009, 15, 1843-57.	1.1	25
87	The translocation of signaling molecules in dark adapting mammalian rod photoreceptor cells is dependent on the cytoskeleton. Cytoskeleton, 2008, 65, 785-800.	4.4	34
88	SANS (USH1G) expression in developing and mature mammalian retina. Vision Research, 2008, 48, 400-412.	1.4	34
89	Light-dependent CK2-mediated phosphorylation of centrins regulates complex formation with visual G-protein. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 1248-1260.	4.1	28
90	Centrins in retinal photoreceptor cells: Regulators in the connecting cilium. Progress in Retinal and Eye Research, 2008, 27, 237-259.	15.5	91

#	Article	IF	Citations
91	A novel Usher protein network at the periciliary reloading point between molecular transport machineries in vertebrate photoreceptor cells. Human Molecular Genetics, 2008, 17, 71-86.	2.9	224
92	A core cochlear phenotype in USH1 mouse mutants implicates fibrous links of the hair bundle in its cohesion, orientation and differential growth. Development (Cambridge), 2008, 135, 1427-1437.	2.5	193
93	Exogenous introduction of an immunodominant peptide from the non-structural IE1 protein of human cytomegalovirus into the MHC class I presentation pathway by recombinant dense bodies. Journal of General Virology, 2008, 89, 369-379.	2.9	16
94	Vezatin, a ubiquitous protein of adherens cell–cell junctions, is exclusively expressed in germ cells in mouse testis. Reproduction, 2007, 133, 563-574.	2.6	18
95	Mutations in LCA5, encoding the ciliary protein lebercilin, cause Leber congenital amaurosis. Nature Genetics, 2007, 39, 889-895.	21.4	186
96	Protein Networks and Complexes in Photoreceptor Cilia. , 2007, 43, 209-235.		101
97	Molecular basis of human Usher syndrome: Deciphering the meshes of the Usher protein network provides insights into the pathomechanisms of the Usher disease. Experimental Eye Research, 2006, 83, 97-119.	2.6	262
98	Photoreceptor vitality in organotypic cultures of mature vertebrate retinas validated by light-dependent molecular movements. Vision Research, 2006, 46, 4464-4471.	1.4	25
99	Centrins, gatekeepers for the light-dependent translocation of transducin through the photoreceptor cell connecting cilium. Vision Research, 2006, 46, 4502-4509.	1.4	40
100	Insights into functional aspects of centrins from the structure of N-terminally extended mouse centrin 1. Vision Research, 2006, 46, 4568-4574.	1.4	14
101	The DFNB31 gene product whirlin connects to the Usher protein network in the cochlea and retina by direct association with USH2A and VLGR1. Human Molecular Genetics, 2006, 15, 751-765.	2.9	162
102	Usher syndrome: molecular links of pathogenesis, proteins and pathways. Human Molecular Genetics, 2006, 15, R262-R270.	2.9	219
103	Molecular Analysis of the Supramolecular Usher Protein Complex in the Retina., 2006, 572, 349-353.		27
104	Crystallization and preliminary X-ray studies of mouse centrin1. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 510-513.	0.7	5
105	Scaffold protein harmonin (USH1C) provides molecular links between Usher syndrome type 1 and type 2. Human Molecular Genetics, 2005, 14, 3933-3943.	2.9	164
106	Interactions in the network of Usher syndrome type 1 proteins. Human Molecular Genetics, 2005, 14, 347-356.	2.9	231
107	Cadherin 23 is a component of the transient lateral links in the developing hair bundles of cochlear sensory cells. Developmental Biology, 2005, 280, 281-294.	2.0	151
108	Photoreceptor expression of the Usher syndrome type 1 protein protocadherin 15 (USH1F) and its interaction with the scaffold protein harmonin (USH1C). Molecular Vision, 2005, 11, 347-55.	1.1	80

#	Article	IF	Citations
109	Differential Expression and Interaction with the Visual G-protein Transducin of Centrin Isoforms in Mammalian Photoreceptor Cells. Journal of Biological Chemistry, 2004, 279, 51472-51481.	3.4	70
110	Differential Distribution of Harmonin Isoforms and Their Possible Role in Usher-1 Protein Complexes in Mammalian Photoreceptor Cells., 2003, 44, 5006.		76
111	The Cellular Function of the Usher Gene Product Myosin VIIa is Specified by Its Ligands. Advances in Experimental Medicine and Biology, 2003, 533, 133-142.	1.6	13
112	Calcium-Dependent Assembly of Centrin-G-Protein Complex in Photoreceptor Cells. Molecular and Cellular Biology, 2002, 22, 2194-2203.	2.3	64
113	MyRIP, a novel Rab effector, enables myosin VIIa recruitment to retinal melanosomes. EMBO Reports, 2002, 3, 463-470.	4.5	171
114	Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle. EMBO Journal, 2002, 21, 6689-6699.	7.8	392
115	Centrins, A Novel Group Of Cat2,2+-Binding Proteins In Vertebrate Photoreceptor Cells. Advances in Experimental Medicine and Biology, 2002, 514, 155-178.	1.6	34
116	The Role of Cadherins in Ca2+-Mediated Cell Adhesion and Inherited Photoreceptor Degeneration. Advances in Experimental Medicine and Biology, 2002, 514, 399-410.	1.6	15
117	Identification of Novel Molecular Components of the Photoreceptor Connecting Cilium by Immunoscreens. Experimental Eye Research, 2001, 73, 837-849.	2.6	19
118	Rhodopsin transport in the membrane of the connecting cilium of mammalian photoreceptor cells. Cytoskeleton, 2000, 46, 95-107.	4.4	149
119	Rhodopsin transport in the membrane of the connecting cilium of mammalian photoreceptor cells. , 2000, 46, 95.		1
120	Interaction of glutamic-acid-rich proteins with the cGMP signalling pathway in rod photoreceptors. Nature, 1999, 400, 761-766.	27.8	146
121	Rhodopsin's Carboxy-Terminal Cytoplasmic Tail Acts as a Membrane Receptor for Cytoplasmic Dynein by Binding to the Dynein Light Chain Tctex-1. Cell, 1999, 97, 877-887.	28.9	467
122	Myosin VIIa as a common component of cilia and microvilli. Cytoskeleton, 1998, 40, 261-271.	4.4	116
123	Expression of Centrin Isoforms in the Mammalian Retina. Experimental Cell Research, 1998, 242, 10-17.	2.6	69
124	Myosin VIIa, the product of the Usher 1B syndrome gene, is concentrated in the connecting cilia of photoreceptor cells. Cytoskeleton, 1997, 37, 240-252.	4.4	171
125	Centrin in the photoreceptor cells of mammalian retinae. Cytoskeleton, 1995, 32, 55-64.	4.4	61
126	Cytoskeletal elements in arthorpod sensilla and mammalian photoreceptors*. Biology of the Cell, 1992, 76, 373-381.	2.0	42

#	Article	IF	CITATIONS
127	Tropomyosin is co-localized with the actin filaments of the scolopale in insect sensilla. Cell and Tissue Research, 1991, 265, 11-17.	2.9	20
128	Centrin- and ?-actinin-like immunoreactivity in the ciliary rootlets of insect sensilla. Cell and Tissue Research, 1991, 266, 231-238.	2.9	48
129	Actin filaments: the main components of the scolopale in insect sensilla. Cell and Tissue Research, 1990, 261, 85-96.	2.9	55