
Zhang Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4672739/publications.pdf Version: 2024-02-01

ΖΗΛΝΟ ΥΛΝΟ

#	Article	IF	CITATIONS
1	Selective Boosting of CCR7-Acting Chemokines; Short Peptides Boost Chemokines with Short Basic Tails, Longer Peptides Boost Chemokines with Long Basic Tails. International Journal of Molecular Sciences, 2022, 23, 1397.	4.1	3
2	Installation of O-glycan sulfation capacities in human HEK293Âcells for display of sulfated mucins. Journal of Biological Chemistry, 2022, 298, 101382.	3.4	6
3	Synthetic Heparan Sulfate Mimetic Pixatimod (PG545) Potently Inhibits SARS-CoV-2 by Disrupting the Spike–ACE2 Interaction. ACS Central Science, 2022, 8, 527-545.	11.3	62
4	Structural basis for the synthesis of the core 1 structure by C1GalT1. Nature Communications, 2022, 13, 2398.	12.8	8
5	Unfractionated heparin inhibits live wild type SARSâ€CoVâ€2 cell infectivity at therapeutically relevant concentrations. British Journal of Pharmacology, 2021, 178, 626-635.	5.4	73
6	Genetic glycoengineering in mammalian cells. Journal of Biological Chemistry, 2021, 296, 100448.	3.4	53
7	Probing the binding specificities of human Siglecs by cell-based glycan arrays. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	83
8	Development of a bispecific immune engager using a recombinant malaria protein. Cell Death and Disease, 2021, 12, 353.	6.3	5
9	FUT8-Directed Core Fucosylation of N-glycans Is Regulated by the Glycan Structure and Protein Environment. ACS Catalysis, 2021, 11, 9052-9065.	11.2	25
10	The Hyperlipidaemic Drug Fenofibrate Significantly Reduces Infection by SARS-CoV-2 in Cell Culture Models. Frontiers in Pharmacology, 2021, 12, 660490.	3.5	31
11	The C-terminal peptide of CCL21 drastically augments CCL21 activity through the dendritic cell lymph node homing receptor CCR7 by interaction with the receptor N-terminus. Cellular and Molecular Life Sciences, 2021, 78, 6963-6978.	5.4	11
12	Evidence of a putative glycosaminoglycan binding site on the glycosylated SARS-CoV-2 spike protein N-terminal domain. Computational and Structural Biotechnology Journal, 2021, 19, 2806-2818.	4.1	33
13	Strategies for Efficient Gene Editing in Protoplasts of Solanum tuberosum Theme: Determining gRNA Efficiency Design by Utilizing Protoplast (Research). Frontiers in Genome Editing, 2021, 3, 795644.	5.2	8
14	Dissecting structure-function of 3-O-sulfated heparin and engineered heparan sulfates. Science Advances, 2021, 7, eabl6026.	10.3	23
15	INDEL detection, the â€~Achilles heel' of precise genome editing: a survey of methods for accurate profiling of gene editing induced indels. Nucleic Acids Research, 2020, 48, 11958-11981.	14.5	51
16	SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell, 2020, 183, 1043-1057.e15.	28.9	860
17	Engineering mammalian cells to produce plant-specific N-glycosylation on proteins. Glycobiology, 2020, 30, 528-538.	2.5	6
18	An Atlas of Human Glycosylation Pathways Enables Display of the Human Glycome by Gene Engineered Cells. Molecular Cell, 2019, 75, 394-407.e5.	9.7	181

ZHANG YANG

#	Article	IF	CITATIONS
19	Activity of N-acylneuraminate-9-phosphatase (NANP) is not essential for de novo sialic acid biosynthesis. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1471-1479.	2.4	18
20	Improved CRISPR/Cas9 gene editing by fluorescence activated cell sorting of green fluorescence protein tagged protoplasts. BMC Biotechnology, 2019, 19, 36.	3.3	22
21	A validated collection of mouse monoclonal antibodies to human glycosyltransferases functioning in mucin-type O-glycosylation. Glycobiology, 2019, 29, 645-656.	2.5	16
22	The glycosylation design space for recombinant lysosomal replacement enzymes produced in CHO cells. Nature Communications, 2019, 10, 1785.	12.8	49
23	Fast and Quantitative Identification of Ex Vivo Precise Genome Targeting-Induced Indel Events by IDAA. Methods in Molecular Biology, 2019, 1961, 45-66.	0.9	3
24	Targeted Analysis of Lysosomal Directed Proteins and Their Sites of Mannose-6-phosphate Modification. Molecular and Cellular Proteomics, 2019, 18, 16-27.	3.8	36
25	A validated gRNA library for CRISPR/Cas9 targeting of the human glycosyltransferase genome. Clycobiology, 2018, 28, 295-305.	2.5	70
26	Glycoengineering design options for IgG1 in CHO cells using precise gene editing. Glycobiology, 2018, 28, 542-549.	2.5	30
27	Galectin binding to cells and glycoproteins with genetically modified glycosylation reveals galectin–glycan specificities in a natural context. Journal of Biological Chemistry, 2018, 293, 20249-20262.	3.4	67
28	EDEM1's mannosidase-like domain binds ERAD client proteins in a redox-sensitive manner and possesses catalytic activity. Journal of Biological Chemistry, 2018, 293, 13932-13945.	3.4	29
29	The GAGOme: a cell-based library of displayed glycosaminoglycans. Nature Methods, 2018, 15, 881-888.	19.0	113
30	Direct quality control of glycoengineered erythropoietin variants. Nature Communications, 2018, 9, 3342.	12.8	71
31	Genome editing using FACS enrichment of nuclease-expressing cells and indel detection by amplicon analysis. Nature Protocols, 2017, 12, 581-603.	12.0	103
32	Mammalian O-mannosylation of cadherins and plexins is independent of protein O-mannosyltransferases 1 and 2. Journal of Biological Chemistry, 2017, 292, 11586-11598.	3.4	39
33	Identification and evolution of a plant cell wall specific glycoprotein glycosyl transferase, ExAD. Scientific Reports, 2017, 7, 45341.	3.3	29
34	Fast and sensitive detection of indels induced by precise gene targeting. Nucleic Acids Research, 2015, 43, e59-e59.	14.5	151
35	Engineered CHO cells for production of diverse, homogeneous glycoproteins. Nature Biotechnology, 2015, 33, 842-844.	17.5	213
36	High-efficiency genome editing via 2A-coupled co-expression of fluorescent proteins and zinc finger nucleases or CRISPR/Cas9 nickase pairs. Nucleic Acids Research, 2014, 42, e84-e84.	14.5	71

ZHANG YANG

#	Article	IF	CITATIONS
37	The GalNAc-type O-Glycoproteome of CHO Cells Characterized by the SimpleCell Strategy. Molecular and Cellular Proteomics, 2014, 13, 3224-3235.	3.8	72
38	Low Density Lipoprotein Receptor Class A Repeats Are O-Glycosylated in Linker Regions. Journal of Biological Chemistry, 2014, 289, 17312-17324.	3.4	46
39	Characterization of Binding Epitopes of CA125 Monoclonal Antibodies. Journal of Proteome Research, 2014, 13, 3349-3359.	3.7	42
40	Toward Stable Genetic Engineering of Human <i>O-</i> Glycosylation in Plants Â. Plant Physiology, 2012, 160, 450-463.	4.8	31
41	Engineering Mammalian Mucin-type O-Glycosylation in Plants*. Journal of Biological Chemistry, 2012, 287, 11911-11923.	3.4	52
42	A Combined Zinc/Cadmium Sensor and Zinc/Cadmium Export Regulator in a Heavy Metal Pump. Journal of Biological Chemistry, 2010, 285, 31243-31252.	3.4	73
43	Assay and heterologous expression in Pichia pastoris of plant cell wall type-II membrane anchored glycosyltransferases. Glycoconjugate Journal, 2009, 26, 1235-1246.	2.7	25