Gregory Challis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/467257/publications.pdf

Version: 2024-02-01

30070 14759 17,129 135 54 127 citations h-index g-index papers 156 156 156 12689 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis of the C50 diastereomers of the C33–C51 fragment of stambomycin D. Organic Chemistry Frontiers, 2022, 9, 445-449.	4.5	1
2	Cloning and expression of <i>Burkholderia</i> polyyne biosynthetic gene clusters in <i>Paraburkholderia</i> hosts provides a strategy for biopesticide development. Microbial Biotechnology, 2022, 15, 2547-2561.	4.2	10
3	Kill and cure: genomic phylogeny and bioactivity of Burkholderia gladioli bacteria capable of pathogenic and beneficial lifestyles. Microbial Genomics, 2021, 7, .	2.0	24
4	Molecular basis for control of antibiotic production by a bacterial hormone. Nature, 2021, 590, 463-467.	27.8	15
5	Docking domain-mediated subunit interactions in natural product megasynth(et)ases. Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	3.0	17
6	Expanding the Substrate Scope of Nitrating Cytochrome P450 TxtE by Active Site Engineering of a Reductase Fusion. ChemBioChem, 2021, 22, 2262-2265.	2.6	11
7	Structures of a non-ribosomal peptide synthetase condensation domain suggest the basis of substrate selectivity. Nature Communications, 2021, 12, 2511.	12.8	53
8	Discovery of the Pseudomonas Polyyne Protegencin by a Phylogeny-Guided Study of Polyyne Biosynthetic Gene Cluster Diversity. MBio, 2021, 12, e0071521.	4.1	16
9	Synthesis of the C1–C27 Fragment of Stambomycin D Validates Modular Polyketide Synthase-Based Stereochemical Assignments. Organic Letters, 2021, 23, 7439-7444.	4.6	3
10	Genomicsâ€Driven Discovery of a Novel Glutarimide Antibiotic from <i>Burkholderia gladioli</i> Reveals an Unusual Polyketide Synthase Chain Release Mechanism. Angewandte Chemie, 2020, 132, 23345-23353.	2.0	3
11	MmfL catalyses formation of a phosphorylated butenolide intermediate in methylenomycin furan biosynthesis. Chemical Communications, 2020, 56, 14443-14446.	4.1	4
12	Discovery and Biosynthesis of Bolagladins: Unusual Lipodepsipeptides from Burkholderia gladioli Clinical Isolates**. Angewandte Chemie - International Edition, 2020, 59, 21553-21561.	13.8	16
13	Discovery and Biosynthesis of Bolagladins: Unusual Lipodepsipeptides from Burkholderia gladioli Clinical Isolates**. Angewandte Chemie, 2020, 132, 21737-21745.	2.0	1
14	Genomicsâ€Driven Discovery of a Novel Glutarimide Antibiotic from <i>Burkholderia gladioli</i> Reveals an Unusual Polyketide Synthase Chain Release Mechanism. Angewandte Chemie - International Edition, 2020, 59, 23145-23153.	13.8	20
15	Catalytic Mechanism of Aromatic Nitration by Cytochrome P450 TxtE: Involvement of a Ferric-Peroxynitrite Intermediate. Journal of the American Chemical Society, 2020, 142, 15764-15779.	13.7	55
16	Genomic Assemblies of Members of <i>Burkholderia</i> and Related Genera as a Resource for Natural Product Discovery. Microbiology Resource Announcements, 2020, 9, .	0.6	9
17	Heterologous reconstitution of the biosynthesis pathway for 4-demethyl-premithramycinone, the aglycon of antitumor polyketide mithramycin. Microbial Cell Factories, 2020, 19, 111.	4.0	5
18	Developmentally regulated volatiles geosmin and 2-methylisoborneol attract a soil arthropod to Streptomyces bacteria promoting spore dispersal. Nature Microbiology, 2020, 5, 821-829.	13.3	102

#	Article	IF	CITATIONS
19	Bovistol B, bovistol D and strossmayerin: Sesquiterpene metabolites from the culture filtrate of the basidiomycete Coprinopsis strossmayeri. PLoS ONE, 2020, 15, e0229925.	2.5	5
20	Structural basis for chain release from the enacyloxin polyketide synthase. Nature Chemistry, 2019, 11, 913-923.	13.6	39
21	Pentamycin Biosynthesis in Philippine <i>Streptomyces</i> Installation of the C-14 Hydroxyl Group. ACS Chemical Biology, 2019, 14, 1305-1309.	3.4	21
22	An unusual <i>Burkholderia gladioli</i> double chain-initiating nonribosomal peptide synthetase assembles â€~fungal' icosalide antibiotics. Chemical Science, 2019, 10, 5489-5494.	7.4	34
23	Genome mining identifies cepacin as a plant-protective metabolite of the biopesticidal bacterium Burkholderia ambifaria. Nature Microbiology, 2019, 4, 996-1005.	13.3	106
24	A dual transacylation mechanism for polyketide synthase chain release in enacyloxin antibiotic biosynthesis. Nature Chemistry, 2019, 11, 906-912.	13.6	29
25	Binding of Distinct Substrate Conformations Enables Hydroxylation of Remote Sites in Thaxtomin D by Cytochrome P450 TxtC. Journal of the American Chemical Society, 2019, 141, 216-222.	13.7	42
26	Desferrioxamine biosynthesis: diverse hydroxamate assembly by substrate-tolerant acyl transferase DesC. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170068.	4.0	29
27	Rieske non-heme iron-dependent oxygenases catalyse diverse reactions in natural product biosynthesis. Natural Product Reports, 2018, 35, 622-632.	10.3	57
28	Mechanism of intersubunit ketosynthase–dehydratase interaction in polyketide synthases. Nature Chemical Biology, 2018, 14, 270-275.	8.0	31
29	Protein–protein interactions in <i>trans</i> AT polyketide synthases. Natural Product Reports, 2018, 35, 1097-1109.	10.3	29
30	Understanding biosynthetic protein–protein interactions. Natural Product Reports, 2018, 35, 1118-1119.	10.3	1
31	Relative stereochemical assignment of C-33 and C-35 in the antibiotic gladiolin. Tetrahedron, 2018, 74, 5150-5155.	1.9	3
32	Anti-microfouling Activity of Glycomyces sediminimaris UTMC 2460 on Dominant Fouling Bacteria of Iran Marine Habitats. Frontiers in Microbiology, 2018, 9, 3148.	3. 5	7
33	Watasemycin biosynthesis in Streptomyces venezuelae: thiazoline C-methylation by a type B radical-SAM methylase homologue. Chemical Science, 2017, 8, 2823-2831.	7.4	42
34	Discovery and Biosynthesis of Gladiolin: A <i>Burkholderia gladioli</i> Antibiotic with Promising Activity against <i>Mycobacterium tuberculosis</i> Journal of the American Chemical Society, 2017, 139, 7974-7981.	13.7	73
35	In Vitro Biosynthetic Studies of Bottromycin Expand the Enzymatic Capabilities of the YcaO Superfamily. Journal of the American Chemical Society, 2017, 139, 18154-18157.	13.7	33
36	Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights. Natural Product Reports, 2017, 34, 712-783.	10.3	101

3

#	Article	IF	CITATIONS
37	Thioester reduction and aldehyde transamination are universal steps in actinobacterial polyketide alkaloid biosynthesis. Chemical Science, 2017, 8, 411-415.	7.4	43
38	A crotonyl-CoA reductase-carboxylase independent pathway for assembly of unusual alkylmalonyl-CoA polyketide synthase extender units. Nature Communications, 2016, 7, 13609.	12.8	20
39	Discovery of Unusual Biaryl Polyketides by Activation of a Silent <i>Streptomyces venezuelae</i> Biosynthetic Gene Cluster. ChemBioChem, 2016, 17, 2189-2198.	2.6	50
40	Mechanistic insights into class B radical-S-adenosylmethionine methylases: ubiquitous tailoring enzymes in natural product biosynthesis. Current Opinion in Chemical Biology, 2016, 35, 73-79.	6.1	34
41	Structure, Chemical Synthesis, and Biosynthesis of Prodiginine Natural Products. Chemical Reviews, 2016, 116, 7818-7853.	47.7	126
42	LC-MS-Guided Isolation of Penicilfuranone A: A New Antifibrotic Furancarboxylic Acid from the Plant Endophytic Fungus <i>Penicillium</i> sp. sh18. Journal of Natural Products, 2016, 79, 149-155.	3.0	23
43	A Flavin-Dependent Decarboxylase–Dehydrogenase–Monooxygenase Assembles the Warhead of α,β-Epoxyketone Proteasome Inhibitors. Journal of the American Chemical Society, 2016, 138, 4342-4345.	13.7	24
44	Editorial: Biosynthetic assembly lines themed issue. Natural Product Reports, 2016, 33, 120-121.	10.3	3
45	Unique post-translational oxime formation in the biosynthesis of the azolemycin complex of novel ribosomal peptides from Streptomyces sp. FXJ1.264. Chemical Science, 2016, 7, 482-488.	7.4	29
46	Stereochemistry and Mechanism of Undecylprodigiosin Oxidative Carbocyclization to Streptorubin B by the Rieske Oxygenase RedG. Journal of the American Chemical Society, 2015, 137, 7889-7897.	13.7	33
47	Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nature Reviews Microbiology, 2015, 13, 509-523.	28.6	762
48	SimC7 Is a Novel NAD(P)H-Dependent Ketoreductase Essential for the Antibiotic Activity of the DNA Gyrase Inhibitor Simocyclinone. Journal of Molecular Biology, 2015, 427, 2192-2204.	4.2	7
49	A combination of polyunsaturated fatty acid, nonribosomal peptide and polyketide biosynthetic machinery is used to assemble the zeamine antibiotics. Chemical Science, 2015, 6, 923-929.	7.4	28
50	Cytochrome P450-mediated hydroxylation is required for polyketide macrolactonization in stambomycin biosynthesis. Journal of Antibiotics, 2014, 67, 71-76.	2.0	22
51	Editorial: Fungal natural products themed issue. Natural Product Reports, 2014, 31, 1241-1241.	10.3	2
52	Exploitation of the <i>Streptomyces coelicolor</i> A3(2) genome sequence for discovery of new natural products and biosynthetic pathways. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 219-232.	3.0	100
53	Natural Product Proteomining, a Quantitative Proteomics Platform, Allows Rapid Discovery of Biosynthetic Gene Clusters for Different Classes of Natural Products. Chemistry and Biology, 2014, 21, 707-718.	6.0	51
54	A talented genus. Nature, 2014, 506, 38-39.	27.8	19

#	Article	IF	Citations
55	Genome mining of <i>Streptomyces ambofaciens</i> . Journal of Industrial Microbiology and Biotechnology, 2014, 41, 251-263.	3.0	85
56	Discovery of a family of \hat{l}^3 -aminobutyrate ureas via rational derepression of a silent bacterial gene cluster. Chemical Science, 2014, 5, 86-89.	7.4	40
57	Mechanism and Catalytic Diversity of Rieske Non-Heme Iron-Dependent Oxygenases. ACS Catalysis, 2013, 3, 2362-2370.	11.2	179
58	Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Natural Product Reports, 2013, 30, 108-160.	10.3	1,692
59	Structure and biosynthesis of scabichelin, a novel tris-hydroxamate siderophore produced by the plant pathogen Streptomyces scabies 87.22. Organic and Biomolecular Chemistry, 2013, 11, 4686.	2.8	56
60	Oxidative Tailoring Reactions Catalyzed by Nonheme Iron-Dependent Enzymes. Methods in Enzymology, 2012, 516, 195-218.	1.0	12
61	The Insect Pathogen Serratia marcescens Db10 Uses a Hybrid Non-Ribosomal Peptide Synthetase-Polyketide Synthase to Produce the Antibiotic Althiomycin. PLoS ONE, 2012, 7, e44673.	2.5	54
62	Functional and Structural Analysis of the Siderophore Synthetase AsbB through Reconstitution of the Petrobactin Biosynthetic Pathway from Bacillus anthracis. Journal of Biological Chemistry, 2012, 287, 16058-16072.	3.4	30
63	Structure and biosynthesis of the unusual polyketide alkaloid coelimycin P1, a metabolic product of the cpk gene cluster of Streptomyces coelicolor M145. Chemical Science, 2012, 3, 2716.	7.4	152
64	Cytochrome P450–catalyzed L-tryptophan nitration in thaxtomin phytotoxin biosynthesis. Nature Chemical Biology, 2012, 8, 814-816.	8.0	172
65	Structural changes in freshwater fish and chironomids exposed to bacterial exotoxins. Ecotoxicology and Environmental Safety, 2012, 80, 37-44.	6.0	4
66	Tailoring Reactions Catalyzed by Heme-Dependent Enzymes. Methods in Enzymology, 2012, 516, 171-194.	1.0	12
67	Posttranslational \hat{l}^2 -methylation and macrolactamidination in the biosynthesis of the bottromycin complex of ribosomal peptide antibiotics. Chemical Science, 2012, 3, 3522.	7.4	67
68	A Sweet Origin for the Key Congocidine Precursor 4â€Acetamidopyrroleâ€2â€carboxylate. Angewandte Chemie - International Edition, 2012, 51, 7454-7458.	13.8	17
69	Antimalarial Activity of Natural and Synthetic Prodiginines. Journal of Medicinal Chemistry, 2011, 54, 5296-5306.	6.4	135
70	Structural Basis for Acyl Acceptor Specificity in the Achromobactin Biosynthetic Enzyme AcsD. Journal of Molecular Biology, 2011, 412, 495-504.	4.2	19
71	Stereochemical Elucidation of Streptorubin B. Journal of the American Chemical Society, 2011, 133, 1793-1798.	13.7	48
72	Regio- and stereodivergent antibiotic oxidative carbocyclizations catalysed by Rieske oxygenase-like enzymes. Nature Chemistry, 2011, 3, 388-392.	13.6	106

#	Article	IF	CITATIONS
73	The Role of Glutathione S-Transferase GliG in Gliotoxin Biosynthesis in Aspergillus fumigatus. Chemistry and Biology, 2011, 18, 542-552.	6.0	79
74	Enacyloxins Are Products of an Unusual Hybrid Modular Polyketide Synthase Encoded by a Cryptic Burkholderia ambifaria Genomic Island. Chemistry and Biology, 2011, 18, 665-677.	6.0	107
75	Characterization and Manipulation of the Pathway-Specific Late Regulator AlpW Reveals <i>Streptomyces ambofaciens</i> sas a New Producer of Kinamycins. Journal of Bacteriology, 2011, 193, 1142-1153.	2.2	96
76	The plant pathogen Streptomyces scabies 87-22 has a functional pyochelin biosynthetic pathway that is regulated by TetR- and AfsR-family proteins. Microbiology (United Kingdom), 2011, 157, 2681-2693.	1.8	47
77	Structure and Function of the RedJ Protein, a Thioesterase from the Prodiginine Biosynthetic Pathway in Streptomyces coelicolor. Journal of Biological Chemistry, 2011, 286, 22558-22569.	3.4	41
78	Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in <i>Streptomyces ambofaciens</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6258-6263.	7.1	275
79	The Scottish Structural Proteomics Facility: targets, methods and outputs. Journal of Structural and Functional Genomics, 2010, 11, 167-180.	1.2	107
80	The dynamic architecture of the metabolic switch in Streptomyces coelicolor. BMC Genomics, 2010, 11, 10.	2.8	171
81	Exploiting Genomics for New Natural Product Discovery in Prokaryotes. , 2010, , 429-453.		2
82	Distinct Extracytoplasmic Siderophore Binding Proteins Recognize Ferrioxamines and Ferricoelichelin in <i>Streptomyces coelicolor</i> A3(2). Biochemistry, 2010, 49, 8033-8042.	2.5	33
83	A butenolide intermediate in methylenomycin furan biosynthesis is implied by incorporation of stereospecifically 13C-labelled glycerols. Chemical Communications, 2010, 46, 4079.	4.1	14
84	Strategies for the Discovery of New Natural Products by Genome Mining. ChemBioChem, 2009, 10, 625-633.	2.6	277
85	Extracellular signalling, translational control, two repressors and an activator all contribute to the regulation of methylenomycin production in <i>Streptomyces coelicolor</i> Microbiology, 2009, 71, 763-778.	2.5	64
86	AcsD catalyzes enantioselective citrate desymmetrization in siderophore biosynthesis. Nature Chemical Biology, 2009, 5, 174-182.	8.0	67
87	Recent advances in siderophore biosynthesis. Current Opinion in Chemical Biology, 2009, 13, 205-215.	6.1	158
88	New natural product biosynthetic chemistry discovered by genome mining. Natural Product Reports, 2009, 26, 977.	10.3	133
89	Chapter 17 Siderophore Biosynthesis. Methods in Enzymology, 2009, 458, 431-457.	1.0	51
90	Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biology, 2009, 10, R51.	9.6	370

#	Article	IF	CITATIONS
91	The long-overlooked enzymology of a nonribosomal peptide synthetase-independent pathway for virulence-conferring siderophore biosynthesis. Chemical Communications, 2009, , 6530.	4.1	91
92	Enantioselective desymmetrisation of citric acid catalysed by the substrate-tolerant petrobactin biosynthetic enzyme AsbA. Chemical Communications, 2009, , 1389.	4.1	18
93	Unusual odd-electron fragments from even-electron protonated prodiginine precursors using positive-ion electrospray tandem mass spectrometry. Journal of the American Society for Mass Spectrometry, 2008, 19, 1856-1866.	2.8	46
94	Purification, crystallization and data collection of <i>Pectobacterium chrysanthemi </i> AcsD, a type A siderophore synthetase. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 1052-1055.	0.7	4
95	Elucidation of the Streptomyces coelicolor Pathway toÂ2-Undecylpyrrole, a Key Intermediate in Undecylprodiginine and Streptorubin B Biosynthesis. Chemistry and Biology, 2008, 15, 137-148.	6.0	84
96	A novel streptococcal integrative conjugative element involved in iron acquisition. Molecular Microbiology, 2008, 70, 1274-1292.	2.5	55
97	Role and substrate specificity of the Streptomyces coelicolor RedH enzyme in undecylprodiginine biosynthesis. Chemical Communications, 2008, , 1865.	4.1	40
98	Genome Mining for Novel Natural Product Discovery. Journal of Medicinal Chemistry, 2008, 51, 2618-2628.	6.4	189
99	Petrobactin biosynthesis: AsbB catalyzes condensation of spermidine with N8-citryl-spermidine and its N1-(3,4-dihydroxybenzoyl) derivative. Chemical Communications, 2008, , 4034.	4.1	31
100	Bisucaberin biosynthesis: an adenylating domain of the BibC multi-enzyme catalyzes cyclodimerization of N-hydroxy-N-succinylcadaverine. Chemical Communications, 2008, , 5119.	4.1	50
101	Identification of a Gene Cluster That Directs Putrebactin Biosynthesis in <i>Shewanella</i> Species: PubC Catalyzes Cyclodimerization of <i>N</i> Hydroxy- <i>N</i> Succinylputrescine. Journal of the American Chemical Society, 2008, 130, 10458-10459.	13.7	56
102	Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology (United) Tj ETQq0	0 0 rgBT /	Overlock 10 ⁻
103	Concise Synthesis of Key 3-Polyenoyl-5-methylenefuran-2,4-dione Putative Intermediates in Quartromicin Biosynthesis. Synlett, 2008, 2008, 2164-2168.	1.8	0
104	2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by <i>Streptomyces coelicolor</i> genome mining. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17510-17515.	7.1	134
105	MbtH-like protein-mediated cross-talk between non-ribosomal peptide antibiotic and siderophore biosynthetic pathways in Streptomyces coelicolor M145. Microbiology (United Kingdom), 2007, 153, 1405-1412.	1.8	93
106	Enzymatic Logic of Anthrax Stealth Siderophore Biosynthesis:Â AsbA Catalyzes ATP-Dependent Condensation of Citric Acid and Spermidine. Journal of the American Chemical Society, 2007, 129, 8416-8417.	13.7	57
107	A Widely Distributed Bacterial Pathway for Siderophore Biosynthesis Independent of Nonribosomal Peptide Synthetases. ChemBioChem, 2007, 8, 1477-1477.	2.6	2
108	Heavy Tools for Genome Mining. Chemistry and Biology, 2007, 14, 7-9.	6.0	25

#	Article	IF	Citations
109	A new family of ATP-dependent oligomerization-macrocyclization biocatalysts. Nature Chemical Biology, 2007, 3, 652-656.	8.0	102
110	Non-linear enzymatic logic in natural product modular mega-synthases and -synthetases. Current Opinion in Drug Discovery & Development, 2007, 10, 203-18.	1.9	13
111	Elucidation of the Streptomyces coelicolor pathway to 4-methoxy-2,2′-bipyrrole-5-carboxaldehyde, an intermediate in prodiginine biosynthesis. Chemical Communications, 2006, , 3981-3983.	4.1	45
112	Type III Polyketide Synthase \hat{I}^2 -Ketoacyl-ACP Starter Unit and Ethylmalonyl-CoA Extender Unit Selectivity Discovered byStreptomyces coelicolorGenome Mining. Journal of the American Chemical Society, 2006, 128, 14754-14755.	13.7	140
113	Engineering Escherichia coli to produce nonribosomal peptide antibiotics. , 2006, 2, 398-400.		7
114	Mechanisms for incorporation of glycerol-derived precursors into polyketide metabolites. Journal of Industrial Microbiology and Biotechnology, 2006, 33, 105-120.	3.0	23
115	The Complete Genome Sequence and Comparative Genome Analysis of the High Pathogenicity Yersinia enterocolitica Strain 8081. PLoS Genetics, 2006, 2, e206.	3.5	227
116	Multiple biosynthetic and uptake systems mediate siderophore-dependent iron acquisition in Streptomyces coelicolor A3(2) and Streptomyces ambofaciens ATCC 23877. Microbiology (United) Tj ETQq0 0 C	rgB8√Ov	erl oek 10 Tf 5
117	Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nature Chemical Biology, 2005, $1,265-269$.	8.0	331
118	A Widely Distributed Bacterial Pathway for Siderophore Biosynthesis Independent of Nonribosomal Peptide Synthetases. ChemBioChem, 2005, 6, 601-611.	2.6	287
119	Evidence for the Unusual Condensation of a Diketide with a Pentulose in the Methylenomycin Biosynthetic Pathway of Streptomyces coelicolor A3(2). ChemBioChem, 2005, 6, 2166-2170.	2.6	20
120	Substrate recognition by nonribosomal peptide synthetase multi-enzymes. Microbiology (United) Tj ETQq0 0 0 rg	gBŢ <u>./</u> Overl	ock 10 Tf 50
121	Genomic plasticity of the causative agent of melioidosis, <i>Burkholderia pseudomallei</i> Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14240-14245.	7.1	675
122	Structural aspects of non-ribosomal peptide biosynthesis. Current Opinion in Structural Biology, 2004, 14, 748-756.	5.7	120
123	Identification of a Cluster of Genes that Directs Desferrioxamine Biosynthesis in Streptomyces coelicolor M145. Journal of the American Chemical Society, 2004, 126, 16282-16283.	13.7	237
124	Engineeringp-Hydroxyphenylpyruvate Dioxygenase to ap-Hydroxymandelate Synthase and Evidence for the Proposed Benzene Oxide Intermediate in Homogentisate Formationâ€. Biochemistry, 2004, 43, 663-674.	2.5	71
125	Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by <i>Streptomyces</i> species. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14555-14561.	7.1	532
126	PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1541-1546.	7.1	1,340

#	Article	IF	CITATIONS
127	The vbs genes that direct synthesis of the siderophore vicibactin in Rhizobium leguminosarum: their expression in other genera requires ECF lf factor Rpol. Molecular Microbiology, 2002, 44, 1153-1166.	2.5	44
128	Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 2002, 417, 141-147.	27.8	2,940
129	Incorporation of [U-13C]glycerol defines plausible early steps for the biosynthesis of methylenomycin A in Streptomyces coelicolor A3(2). Chemical Communications, 2001, , 935-936.	4.1	11
130	Analysis of the prodiginine biosynthesis gene cluster of Streptomyces coelicolor A3(2): new mechanisms for chain initiation and termination in modular multienzymes. Chemistry and Biology, 2001, 8, 817-829.	6.0	164
131	Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chemistry and Biology, 2000, 7, 211-224.	6.0	746
132	Towards a Biomimetic Synthesis of the Marine Alkaloids Papuamine and Haliclonadiamine: Model Studies. Tetrahedron, 2000, 56, 623-628.	1.9	14
133	Coelichelin, a new peptide siderophore encoded by the Streptomyces coelicolorgenome: structure prediction from the sequence of its non-ribosomal peptide synthetase. FEMS Microbiology Letters, 2000, 187, 111-114.	1.8	186
134	Coelichelin, a new peptide siderophore encoded by the Streptomyces coelicolor genome: structure prediction from the sequence of its non-ribosomal peptide synthetase. FEMS Microbiology Letters, 2000, 187, 111-114.	1.8	6
135	Rate enhancement in the reduction of $(2,3)$ - \hat{l}_{\pm} - and $(2,3)$ - \hat{l}_{\pm} -methylenepenam \hat{l}_{\pm} -sulfoxides. Tetrahedron Letters, 1998, 39, 8537-8540.	1.4	11