Adrian Francis Stewart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4671570/publications.pdf

Version: 2024-02-01

76 papers 9,998 citations

39 h-index 74163 75 g-index

86 all docs 86 docs citations

86 times ranked 15600 citing authors

#	Article	IF	CITATIONS
1	A conditional knockout resource for the genome-wide study of mouse gene function. Nature, 2011, 474, 337-342.	27.8	1,488
2	A new logic for DNA engineering using recombination in Escherichia coli. Nature Genetics, 1998, 20, 123-128.	21.4	1,123
3	High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nature Genetics, 2000, 25, 139-140.	21.4	1,073
4	Heterodimerization of the Drosophila ecdysone receptor with retinoid X receptor and ultraspiracle. Nature, 1993, 362, 471-475.	27.8	512
5	Rapid modification of bacterial artificial chromosomes by ET- recombination. Nucleic Acids Research, 1999, 27, 1555-1557.	14.5	475
6	DNA cloning by homologous recombination in Escherichia coli. Nature Biotechnology, 2000, 18, 1314-1317.	17.5	376
7	Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nature Biotechnology, 2012, 30, 440-446.	17.5	375
8	Dre recombinase, like Cre, is a highly efficient site-specific recombinase in <i>E. coli</i> , mammalian cells and mice. DMM Disease Models and Mechanisms, 2009, 2, 508-515.	2.4	254
9	Multiple epigenetic maintenance factors implicated by the loss of Mll2 in mouse development. Development (Cambridge), 2006, 133, 1423-1432.	2.5	245
10	Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant. Development (Cambridge), 2014, 141, 526-537.	2.5	225
11	MLL2 Is Required in Oocytes for Bulk Histone 3 Lysine 4 Trimethylation and Transcriptional Silencing. PLoS Biology, 2010, 8, e1000453.	5.6	220
12	A reliable lacZ expression reporter cassette for multipurpose, knockout-first alleles. Genesis, 2004, 38, 151-158.	1.6	186
13	Temporally and spatially regulated somatic mutagenesis in mice. Nucleic Acids Research, 1998, 26, 1427-1432.	14.5	173
14	The H3K4 methyltransferase Setd1a is first required at the epiblast stage, whereas Setd1b becomes essential after gastrulation. Development (Cambridge), 2014, 141, 1022-1035.	2.5	166
15	The histone 3 lysine 4 methyltransferase, Mll2, is only required briefly in development and spermatogenesis. Epigenetics and Chromatin, 2009, 2, 5.	3.9	154
16	Efficient FLP recombination in mouse ES cells and oocytes. Genesis, 2001, 31, 6-10.	1.6	151
17	Protein Interactions within the Set1 Complex and Their Roles in the Regulation of Histone 3 Lysine 4 Methylation. Journal of Biological Chemistry, 2006, 281, 35404-35412.	3.4	142
18	RecET direct cloning and Red \hat{l}^2 recombineering of biosynthetic gene clusters, large operons or single genes for heterologous expression. Nature Protocols, 2016, 11, 1175-1190.	12.0	132

#	Article	IF	Citations
19	An improved Flp deleter mouse in C57Bl/6 based on Flpo recombinase. Genesis, 2010, 48, 512-520.	1.6	128
20	MLL2 conveys transcription-independent H3K4 trimethylation in oocytes. Nature Structural and Molecular Biology, 2018, 25, 73-82.	8.2	127
21	Neuronal Kmt2a/Mll1 Histone Methyltransferase Is Essential for Prefrontal Synaptic Plasticity and Working Memory. Journal of Neuroscience, 2015, 35, 5097-5108.	3.6	126
22	Histone-Methyltransferase MLL2 (KMT2B) Is Required for Memory Formation in Mice. Journal of Neuroscience, 2013, 33, 3452-3464.	3 . 6	121
23	Mutation of cancer driver <i>MLL2</i> results in transcription stress and genome instability. Genes and Development, 2016, 30, 408-420.	5.9	112
24	ExoCET: exonuclease in vitro assembly combined with RecET recombination for highly efficient direct DNA cloning from complex genomes. Nucleic Acids Research, 2018, 46, e28-e28.	14.5	96
25	Synthetic CpG islands reveal DNA sequence determinants of chromatin structure. ELife, 2014, 3, e03397.	6.0	95
26	The histone demethylase UTX regulates stem cell migration and hematopoiesis. Blood, 2013, 121, 2462-2473.	1.4	93
27	High Conservation of the Set1/Rad6 Axis of Histone 3 Lysine 4 Methylation in Budding and Fission Yeasts. Journal of Biological Chemistry, 2003, 278, 8487-8493.	3.4	84
28	The Histone Methyltransferase Wbp7 Controls Macrophage Function through GPI Glycolipid Anchor Synthesis. Immunity, 2012, 36, 572-585.	14.3	79
29	KMT2A and KMT2B Mediate Memory Function by Affecting Distinct Genomic Regions. Cell Reports, 2017, 20, 538-548.	6.4	77
30	A Recombineering Pipeline to Make Conditional Targeting Constructs. Methods in Enzymology, 2010, 477, 125-144.	1.0	75
31	Conformational Adaptability of Red \hat{i}^2 during DNA Annealing and Implications for Its Structural Relationship with Rad52. Journal of Molecular Biology, 2009, 391, 586-598.	4.2	73
32	MLL2, Not MLL1, Plays a Major Role in Sustaining MLL-Rearranged Acute Myeloid Leukemia. Cancer Cell, 2017, 31, 755-770.e6.	16.8	72
33	RAP1-mediated MEK/ERK pathway defects in Kabuki syndrome. Journal of Clinical Investigation, 2015, 125, 3585-3599.	8.2	69
34	A Practical Summary of Site-Specific Recombination, Conditional Mutagenesis, and Tamoxifen Induction of CreERT2. Methods in Enzymology, 2010, 477, 109-123.	1.0	53
35	Regular Nanoscale Protein Patterns via Directed Adsorption through Self-Assembled DNA Origami Masks. ACS Applied Materials & Interfaces, 2016, 8, 31239-31247.	8.0	52
36	An Engineered Virus Library as a Resource for the Spectrum-wide Exploration of Virus and Vector Diversity. Cell Reports, 2017, 19, 1698-1709.	6.4	49

#	Article	IF	CITATIONS
37	Heterologous Production and Yield Improvement of Epothilones in Burkholderiales Strain DSM 7029. ACS Chemical Biology, 2017, 12, 1805-1812.	3.4	48
38	Expressing cytotoxic compounds in Escherichia coli Nissle 1917 for tumor-targeting therapy. Research in Microbiology, 2019, 170, 74-79.	2.1	48
39	SETD1A protects HSCs from activation-induced functional decline in vivo. Blood, 2018, 131, 1311-1324.	1.4	47
40	The histone 3 lysine 4 methyltransferase Setd1b is a maternal effect gene required for the oogenic gene expression program. Development (Cambridge), 2017, 144, 2606-2617.	2.5	44
41	Single-Stranded DNA-Binding Protein and Exogenous RecBCD Inhibitors Enhance Phage-Derived Homologous Recombination in Pseudomonas. IScience, 2019, 14, 1-14.	4.1	43
42	Neuronal Deletion of Kmt2a/Mll1 Histone Methyltransferase in Ventral Striatum is Associated with Defective Spike-Timing-Dependent Striatal Synaptic Plasticity, Altered Response to Dopaminergic Drugs, and Increased Anxiety. Neuropsychopharmacology, 2016, 41, 3103-3113.	5.4	40
43	Enhanced Heterologous Spinosad Production from a 79-kb Synthetic Multioperon Assembly. ACS Synthetic Biology, 2019, 8, 137-147.	3.8	39
44	The epigenetic regulator Mll1 is required for Wnt-driven intestinal tumorigenesis and cancer stemness. Nature Communications, 2020, 11 , 6422 .	12.8	38
45	IncRNA Panct1 Maintains Mouse Embryonic Stem Cell Identity by Regulating TOBF1 Recruitment to Oct-Sox Sequences in Early G1. Cell Reports, 2017, 21, 3012-3021.	6.4	35
46	The H3K4 methyltransferase Setd1b is essential for hematopoietic stem and progenitor cell homeostasis in mice. ELife, 2018, 7, .	6.0	34
47	Recombineering, transfection, Western, IP and ChIP methods for protein tagging via gene targeting or BAC transgenesis. Methods, 2011, 53, 437-452.	3.8	33
48	The Histone Methyltransferase KMT2B Is Required for RNA Polymerase II Association and Protection from DNA Methylation at the <i>MagohB</i> CpG Island Promoter. Molecular and Cellular Biology, 2013, 33, 1383-1393.	2.3	33
49	MLL1 is required for PAX7 expression and satellite cell self-renewal in mice. Nature Communications, 2019, 10, 4256.	12.8	31
50	Cooperative genetic networks drive embryonic stem cell transition from na \tilde{A} -ve to formative pluripotency. EMBO Journal, 2021, 40, e105776.	7.8	31
51	KMT2B Is Selectively Required for Neuronal Transdifferentiation, and Its Loss Exposes Dystonia Candidate Genes. Cell Reports, 2018, 25, 988-1001.	6.4	28
52	Kmt2b conveys monovalent and bivalent H3K4me3 in mouse spermatogonial stem cells at germline and embryonic promoters. Development (Cambridge), $2018, 145, .$	2.5	26
53	The Set1 complex is dimeric and acts with Jhd2 demethylation to convey symmetrical H3K4 trimethylation. Genes and Development, 2019, 33, 550-564.	5.9	24
54	The contribution of homology arms to nuclease-assisted genome engineering. Nucleic Acids Research, 2017, 45, 8105-8115.	14.5	23

#	Article	IF	Citations
55	RedEx: a method for seamless DNA insertion and deletion in large multimodular polyketide synthase gene clusters. Nucleic Acids Research, 2020, 48, e130-e130.	14.5	23
56	A Single-Strand Annealing Protein Clamps DNA to Detect and Secure Homology. PLoS Biology, 2015, 13, e1002213.	5.6	22
57	RAC-tagging: Recombineering And Cas9-assisted targeting for protein tagging and conditional analyses. Scientific Reports, 2016, 6, 25529.	3.3	22
58	Deficiency and haploinsufficiency of histone macroH2A1.1 in mice recapitulate hematopoietic defects of human myelodysplastic syndrome. Clinical Epigenetics, 2019, 11, 121.	4.1	21
59	MLL4 is required after implantation whereas MLL3 becomes essential during late gestation. Development (Cambridge), 2020, 147, .	2,5	18
60	Twenty-Seven Tamoxifen-Inducible iCre-Driver Mouse Strains for Eye and Brain, Including Seventeen Carrying a New Inducible-First Constitutive-Ready Allele. Genetics, 2019, 211, 1155-1177.	2.9	17
61	msVolcano: A flexible web application for visualizing quantitative proteomics data. Proteomics, 2016, 16, 2491-2494.	2.2	16
62	Systems Analyses Reveal Shared and Diverse Attributes of Oct4 Regulation in Pluripotent Cells. Cell Systems, 2015, 1, 141-151.	6.2	15
63	DNA annealing by $Red\hat{I}^2$ is insufficient for homologous recombination and the additional requirements involve intra- and inter-molecular interactions. Scientific Reports, 2016, 6, 34525.	3.3	15
64	Distinct pathways affected by menin versus MLL1/MLL2 in MLL-rearranged acute myeloid leukemia. Experimental Hematology, 2019, 69, 37-42.	0.4	13
65	Loss of histone methyltransferase SETD1B in oogenesis results in the redistribution of genomic histone 3 lysine 4 trimethylation. Nucleic Acids Research, 2022, 50, 1993-2004.	14.5	13
66	Analysis of combinatorial chemokine receptor expression dynamics using multi-receptor reporter mice. ELife, $0,11,.$	6.0	12
67	The Kw Recombinase, an Integrase from Kluyveromyces Waltii. FEBS Journal, 1997, 248, 903-912.	0.2	11
68	Human adenovirus type 17 from species D transduces endothelial cells and human CD46 is involved in cell entry. Scientific Reports, 2018, 8, 13442.	3.3	10
69	Improved dsDNA recombineering enables versatile multiplex genome engineering of kilobase-scale sequences in diverse bacteria. Nucleic Acids Research, 2022, 50, e15-e15.	14.5	8
70	Postnatal expression of the lysine methyltransferase SETD1B is essential for learning and the regulation of neuronâ€enriched genes. EMBO Journal, 2022, 41, e106459.	7.8	7
71	Proteomic navigation using proximity-labeling. Methods, 2019, 164-165, 67-72.	3.8	6
72	Epigenetic modifier balances Mapk and Wnt signalling in differentiation of goblet and Paneth cells. Life Science Alliance, 2022, 5, e202101187.	2.8	6

#	Article	IF	CITATIONS
73	MLL1 is required for maintenance of intestinal stem cells. PLoS Genetics, 2021, 17, e1009250.	3.5	5
74	New methods for extracting function from the mammalian genome. Methods, 2019, 164-165, 1-2.	3.8	1
75	Protein-Assisted Room-Temperature Assembly of Rigid, Immobile Holliday Junctions and Hierarchical DNA Nanostructures. Molecules, 2020, 25, 5099.	3.8	1
76	The Role of MLL1 and MLL2 in MLL Fusion Oncoprotein-Initiated Leukemia. Blood, 2016, 128, 573-573.	1.4	0