Axel Thielscher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4670829/publications.pdf

Version: 2024-02-01

61984 51608 9,319 125 43 86 citations h-index g-index papers 148 148 148 7327 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A checklist for assessing the methodological quality of concurrent tES-fMRI studies (ContES) Tj ETQq1 10.	.784314 rgBT	Overlock 10 Tf
2	Differences in electric field strength between clinical and non-clinical populations induced by prefrontal tDCS: A cross-diagnostic, individual MRI-based modeling study. NeuroImage: Clinical, 2022, 34, 103011.	2.7	13
3	Relationship between high-frequency activity in the cortical sensory and the motor hand areas, and their myelin content. Brain Stimulation, 2022, 15, 717-726.	1.6	6
4	Database of 25 validated coil models for electric field simulations for TMS. Brain Stimulation, 2022, 15, 697-706.	1.6	16
5	Transcranial magnetic stimulation of the brain: What is stimulated? – A consensus and critical position paper. Clinical Neurophysiology, 2022, 140, 59-97.	1.5	124
6	Short periods of bipolar anodal TDCS induce no instantaneous dose-dependent increase in cerebral blood flow in the targeted human motor cortex. Scientific Reports, $2022,12,.$	3.3	3
7	Effects of bifrontal transcranial direct current stimulation on brain glutamate levels and resting state connectivity: multimodal MRI data for the cathodal stimulation site. European Archives of Psychiatry and Clinical Neuroscience, 2021, 271, 111-122.	3.2	17
8	Inter-individual and age-dependent variability in simulated electric fields induced by conventional transcranial electrical stimulation. NeuroImage, 2021, 224, 117413.	4.2	56
9	Detection of biological signals from a live mammalian muscle using an early stage diamond quantum sensor. Scientific Reports, 2021, 11, 2412.	3.3	39
10	Optimizing the electric field strength in multiple targets for multichannel transcranial electric stimulation. Journal of Neural Engineering, 2021, 18, 014001.	3.5	14
11	The Myelin Content of the Human Precentral Hand Knob Reflects Interindividual Differences in Manual Motor Control at the Physiological and Behavioral Level. Journal of Neuroscience, 2021, 41, 3163-3179.	3.6	24
12	Transcranial focused ultrasound stimulation with high spatial resolution. Brain Stimulation, 2021, 14, 290-300.	1.6	47
13	In-vitro Recordings of Neural Magnetic Activity From the Auditory Brainstem Using Color Centers in Diamond: A Simulation Study. Frontiers in Neuroscience, 2021, 15, 643614.	2.8	5
14	The impact of CT image parameters and skull heterogeneity modeling on the accuracy of transcranial focused ultrasound simulations. Journal of Neural Engineering, 2021, 18, 046041.	3.5	14
15	Safety evaluation of a new setup for transcranial electric stimulation during magnetic resonance imaging. Brain Stimulation, 2021, 14, 488-497.	1.6	6
16	Sensitivity and resolution improvement for in vivo magnetic resonance currentâ€density imaging of the human brain. Magnetic Resonance in Medicine, 2021, 86, 3131-3146.	3.0	4
17	Concurrent TMS-fMRI for causal network perturbation and proof of target engagement. Neurolmage, 2021, 237, 118093.	4.2	56
18	Estimation of individually induced e-field strength during transcranial electric stimulation using the head circumference. Brain Stimulation, 2021, 14, 1055-1058.	1.6	16

#	Article	IF	CITATIONS
19	On the reconstruction of magnetic resonance current density images of the human brain: Pitfalls and perspectives. Neurolmage, 2021, 243, 118517.	4.2	5
20	Interindividual variability of electric fields during transcranial temporal interference stimulation (tTIS). Scientific Reports, 2021, 11, 20357.	3.3	21
21	Efficient high-resolution TMS mapping of the human motor cortex by nonlinear regression. Neurolmage, 2021, 245, 118654.	4.2	33
22	Multichannel anodal tDCS over the left dorsolateral prefrontal cortex in a paediatric population. Scientific Reports, 2021, 11, 21512.	3.3	14
23	Increasing propensity to mindâ€wander by transcranial direct current stimulation? A registered report. European Journal of Neuroscience, 2020, 51, 755-780.	2.6	32
24	A novel approach to localize cortical TMS effects. NeuroImage, 2020, 209, 116486.	4.2	112
25	Value and limitations of intracranial recordings for validating electric field modeling for transcranial brain stimulation. Neurolmage, 2020, 208, 116431.	4.2	39
26	Stimulating aged brains with transcranial direct current stimulation: Opportunities and challenges. Psychiatry Research - Neuroimaging, 2020, 306, 111179.	1.8	21
27	Accurate TMS Head Modeling: Interfacing SimNIBS and BEM-FMM in a MATLAB-Based Module. , 2020, 2020, 5326-5329.		2
28	Fast evaluation of the Biot-Savart integral using FFT for electrical conductivity imaging. Journal of Computational Physics, 2020, 411, 109408.	3.8	13
29	Transducer modeling for accurate acoustic simulations of transcranial focused ultrasound stimulation. Journal of Neural Engineering, 2020, 17, 046010.	3.5	19
30	Guidelines for TMS/tES clinical services and research through the COVID-19 pandemic. Brain Stimulation, 2020, 13, 1124-1149.	1.6	78
31	Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling. Neurolmage, 2020, 219, 117044.	4.2	73
32	Probing EEG activity in the targeted cortex after focal transcranial electrical stimulation. Brain Stimulation, 2020, 13, 815-818.	1.6	5
33	Safety of transcranial focused ultrasound stimulation: A systematic review of the state of knowledge from both human and animal studies. Brain Stimulation, 2019, 12, 1367-1380.	1.6	86
34	Electric field simulations for transcranial brain stimulation using FEM: an efficient implementation and error analysis. Journal of Neural Engineering, 2019, 16, 066032.	3.5	95
35	Accurate anatomical head segmentations: a data set for biomedical simulations. , 2019, 2019, 6118-6123.		6
36	Accessibility of cortical regions to focal TES: Dependence on spatial position, safety, and practical constraints. Neurolmage, 2019, 203, 116183.	4.2	67

#	Article	IF	CITATIONS
37	Optimization of tumor treating fields using singular value decomposition and minimization of field anisotropy. Physics in Medicine and Biology, 2019, 64, 04NT03.	3.0	14
38	The stray magnetic fields in Magnetic Resonance Current Density Imaging (MRCDI). Physica Medica, 2019, 59, 142-150.	0.7	12
39	Towards precise brain stimulation: Is electric field simulation related to neuromodulation?. Brain Stimulation, 2019, 12, 1159-1168.	1.6	99
40	Can Transcranial Electrical Stimulation Localize Brain Function?. Frontiers in Psychology, 2019, 10, 213.	2.1	48
41	Commentary: Transcranial stimulation of the frontal lobes increases propensity of mind-wandering without changing meta-awareness. Frontiers in Psychology, 2019, 10, 130.	2.1	5
42	Blinding is compromised for transcranial direct current stimulation at 1Â <scp>mA</scp> for 20Âmin in young healthy adults. European Journal of Neuroscience, 2019, 50, 3261-3268.	2.6	70
43	Distilling the essence of TMS-evoked EEG potentials (TEPs): A call for securing mechanistic specificity and experimental rigor. Brain Stimulation, 2019, 12, 1051-1054.	1.6	42
44	SURG-01. OPTIMALTTF-1: FINAL RESULTS OF A PHASE 1 STUDY: FIRST GLIOBLASTOMA RECURRENCE EXAMINING TARGETED SKULL REMODELING SURGERY TO ENHANCE TUMOR TREATING FIELDS STRENGTH. Neuro-Oncology, 2019, 21, vi239-vi240.	1.2	0
45	Enhancing Tumor Treating Fields Therapy with Skull-Remodeling Surgery. The Role of Finite Element Methods in Surgery Planning. , 2019, 2019, 6995-6997.		7
46	Comparison of prospective head motion correction with NMR field probes and an optical tracking system. Magnetic Resonance in Medicine, 2019, 81, 719-729.	3.0	23
47	A principled approach to conductivity uncertainty analysis in electric field calculations. NeuroImage, 2019, 188, 821-834.	4.2	96
48	Miniature ultrasound ring array transducers for transcranial ultrasound neuromodulation of freely-moving small animals. Brain Stimulation, 2019, 12, 251-255.	1.6	42
49	The non-transcranial TMS-evoked potential is an inherent source of ambiguity in TMS-EEG studies. Neurolmage, 2019, 185, 300-312.	4.2	246
50	SimNIBS 2.1: A Comprehensive Pipeline for Individualized Electric Field Modelling for Transcranial Brain Stimulation., 2019,, 3-25.		115
51	A Review on Tumor-Treating Fields (TTFields): Clinical Implications Inferred From Computational Modeling. IEEE Reviews in Biomedical Engineering, 2018, 11, 195-207.	18.0	69
52	An MR-Compatible Haptic Interface With Seven Degrees of Freedom. IEEE/ASME Transactions on Mechatronics, 2018, 23, 624-635.	5.8	5
53	Effects of transcranial direct current stimulation for treating depression: A modeling study. Journal of Affective Disorders, 2018, 234, 164-173.	4.1	59
54	Age-dependent effects of brain stimulation on network centrality. NeuroImage, 2018, 176, 71-82.	4.2	48

#	Article	IF	Citations
55	Human in-vivo brain magnetic resonance current density imaging (MRCDI). NeuroImage, 2018, 171, 26-39.	4.2	44
56	Feasibility and resolution limits of opto-magnetic imaging of neural network activity in brain slices using color centers in diamond. Scientific Reports, 2018, 8, 4503.	3.3	20
57	Automatic skull segmentation from MR images for realistic volume conductor models of the head: Assessment of the state-of-the-art. NeuroImage, 2018, 174, 587-598.	4.2	198
58	Sensitivity analysis of magnetic field measurements for magnetic resonance electrical impedance tomography (MREIT). Magnetic Resonance in Medicine, 2018, 79, 748-760.	3.0	13
59	ACTR-43. OPEN-LABEL PHASE 1 CLINICAL TRIAL TESTING PERSONALIZED AND TARGETED SKULL REMODELING SURGERY TO MAXIMIZE TTFIELDS INTENSITY FOR RECURRENT GLIOBLASTOMA – INTERIM ANALYSIS AND SAFETY ASSESSMENT (OPTIMALTTF-1). Neuro-Oncology, 2018, 20, vi21-vi21.	1.2	3
60	EXTH-40. OPTIMIZING ARRAY LAYOUTS FOR GLIOBLASTOMA THERAPY WITH TUMOR TREATING FIELDS (TTFIELDS) –USE OF OBLIQUE ARRAY LAYOUTS SURPASS DEFAULT LEFT-RIGHT/ANTERIOR-POSTERIOR POSITIONS IN A COMPUTER SIMULATION MODEL. Neuro-Oncology, 2018, 20, vi93-vi93.	1,2	0
61	Estimating the Intensity and Anisotropy of Tumor Treating Fields Jsing Singular Value Decomposition. Towards a More Comprehensive Estimation of Anti-tumor Efficacy., 2018, 2018, 4897-4900.		9
62	EXTH-38. A NEW COMPUTATIONAL METHOD FOR COMPREHENSIVE ESTIMATION OF ANTI TUMOR EFFICACY OF TUMOR TREATING FIELDS (TTFIELDS). ACCOUNTING FOR FIELD INTENSITY, EXPOSURE TIME AND UNWANTED SPATIAL FIELD CORRELATION. Neuro-Oncology, 2018, 20, vi93-vi93.	1.2	0
63	Head models of healthy and depressed adults for simulating the effects of non-invasive brain stimulation. F1000Research, 2018, 7, 704.	1.6	10
64	On the importance of precise electrode placement for targeted transcranial electric stimulation. NeuroImage, 2018, 181, 560-567.	4.2	87
65	Importance of electrode position for the distribution of tumor treating fields (TTFields) in a human brain. Identification of effective layouts through systematic analysis of array positions for multiple tumor locations. PLoS ONE, 2018, 13, e0201957.	2.5	32
66	[OA019] Human in-vivo Magnetic Resonance Current Density Imaging (MRCDI) and MR Electrical Impedance Tomography (MREIT). Physica Medica, 2018, 52, 8.	0.7	0
67	Skull segmentation from MR scans using a higher-order shape model based on convolutional restricted Boltzmann machines. , 2018, , .		1
68	Head models of healthy and depressed adults forÂsimulating the electric fields of non-invasive electric brain stimulation. F1000Research, 2018, 7, 704.	1.6	15
69	Where does TMS Stimulate the Motor Cortex? Combining Electrophysiological Measurements and Realistic Field Estimates to Reveal the Affected Cortex Position. Cerebral Cortex, 2017, 27, 5083-5094.	2.9	110
70	The impact of large structural brain changes in chronic stroke patients on the electric field caused by transcranial brain stimulation. Neurolmage: Clinical, 2017, 15, 106-117.	2.7	84
71	Transcranial magnetic stimulation of right inferior parietal cortex causally influences prefrontal activation for visual detection. European Journal of Neuroscience, 2017, 46, 2807-2816.	2.6	8
72	How to target inter-regional phase synchronization with dual-site Transcranial Alternating Current Stimulation. NeuroImage, 2017, 163, 68-80.	4.2	94

#	Article	IF	Citations
73	Centre-surround organization of fast sensorimotor integration in human motor hand area. Neurolmage, 2017, 158, 37-47.	4.2	47
74	Impact of tumor position, conductivity distribution and tissue homogeneity on the distribution of tumor treating fields in a human brain: A computer modeling study. PLoS ONE, 2017, 12, e0179214.	2.5	35
75	Comparing TMS perturbations to occipital and parietal cortices in concurrent TMS-fMRI studies—Methodological considerations. PLoS ONE, 2017, 12, e0181438.	2.5	9
76	EXTH-04. GUIDING PRINCIPLES FOR PREDICTING THE DISTRIBUTION OF TUMOR TREATING FIELDS IN AÂHUMAN BRAIN: AÂCOMPUTER MODELING STUDY INVESTIGATING THE IMPACT OF TUMOR POSITION, CONDUCTIVITY DISTRIBUTION AND TISSUE HOMOGENEITY. Neuro-Oncology, 2017, 19, vi73-vi73.	1.2	8
77	Enhancing Predicted Efficacy of Tumor Treating Fields Therapy of Glioblastoma Using Targeted Surgical Craniectomy: A Computer Modeling Study. PLoS ONE, 2016, 11, e0164051.	2.5	34
78	Transcranial brain stimulation: closing the loop between brain and stimulation. Current Opinion in Neurology, 2016, 29, 397-404.	3.6	83
79	Reaching with the sixth sense: Vestibular contributions to voluntary motor control in the human right parietal cortex. Neurolmage, 2016, 124, 869-875.	4.2	19
80	Evaluation of a Modified High-Definition Electrode Montage for Transcranial Alternating Current Stimulation (tACS) of Pre-Central Areas. Brain Stimulation, 2016, 9, 700-704.	1.6	46
81	Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates. Scientific Reports, 2016, 6, 31236.	3.3	256
82	Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives. NeuroImage, 2016, 140, 4-19.	4.2	271
83	Field modeling for transcranial magnetic stimulation: A useful tool to understand the physiological effects of TMS?., 2015, 2015, 222-5.		454
84	Determinants of the electric field during transcranial direct current stimulation. NeuroImage, 2015, 109, 140-150.	4.2	529
85	Bringing transcranial mapping into shape: Sulcus-aligned mapping captures motor somatotopy in human primary motor hand area. Neurolmage, 2015, 120, 164-175.	4.2	90
86	Transcranial Magnetic Stimulation: An Automated Procedure toÂObtain Coil-specific Models for Field Calculations. Brain Stimulation, 2015, 8, 1205-1208.	1.6	15
87	Modeling the effects of noninvasive transcranial brain stimulation at the biophysical, network, and cognitive Level. Progress in Brain Research, 2015, 222, 261-287.	1.4	49
88	On the importance of electrode parameters for shaping electric field patterns generated by tDCS. NeuroImage, 2015, 120, 25-35.	4.2	212
89	Concurrent TMS-fMRI Reveals Interactions between Dorsal and Ventral Attentional Systems. Journal of Neuroscience, 2015, 35, 11445-11457.	3.6	50
90	Connectivity between Right Inferior Frontal Gyrus and Supplementary Motor Area Predicts After-Effects of Right Frontal Cathodal tDCS on Picture Naming Speed. Brain Stimulation, 2014, 7, 122-129.	1.6	43

#	Article	IF	Citations
91	Design of a new MR-compatible haptic interface with six actuated degrees of freedom. , 2014, , .		8
92	A key region in the human parietal cortex for processing proprioceptive hand feedback during reaching movements. NeuroImage, 2014, 84, 615-625.	4.2	47
93	Electric field calculations in brain stimulation based on finite elements: An optimized processing pipeline for the generation and usage of accurate individual head models. Human Brain Mapping, 2013, 34, 923-935.	3.6	353
94	Effects of Parietal TMS on Visual and Auditory Processing at the Primary Cortical Level – A Concurrent TMS-fMRI Study. Cerebral Cortex, 2013, 23, 873-884.	2.9	29
95	Uncovering a Context-Specific Connectional Fingerprint of Human Dorsal Premotor Cortex. Journal of Neuroscience, 2012, 32, 7244-7252.	3.6	37
96	Electric field calculations in brain stimulation: The importance of geometrically accurate head models. Biomedizinische Technik, 2012, 57, .	0.8	3
97	The neural mechanisms of reliability weighted integration of shape information from vision and touch. Neurolmage, 2012, 60, 1063-1072.	4.2	53
98	How the brain tissue shapes the electric field induced by transcranial magnetic stimulation. Neurolmage, 2011, 58, 849-859.	4.2	291
99	Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation. Neurolmage, 2011, 54, 234-243.	4.2	351
100	Effects of transcranial magnetic stimulation on visual evoked potentials in a visual suppression task. NeuroImage, 2011, 54, 1375-1384.	4.2	44
101	Assessment of MR compatibility of a PET insert developed for simultaneous multiparametric PET/MR imaging on an animal system operating at 7 T. Magnetic Resonance in Medicine, 2011, 65, 269-279.	3.0	52
102	Contributions of the PPC to Online Control of Visually Guided Reaching Movements Assessed with fMRI-Guided TMS. Cerebral Cortex, 2011, 21, 1602-1612.	2.9	51
103	Disrupting Parietal Function Prolongs Dominance Durations in Binocular Rivalry. Current Biology, 2010, 20, 2106-2111.	3.9	102
104	Interleaved TMS/CASL: Comparison of different rTMS protocols. NeuroImage, 2010, 49, 612-620.	4.2	37
105	New coil positioning method for interleaved transcranial magnetic stimulation (TMS)/functional MRI (fMRI) and its validation in a motor cortex study. Journal of Magnetic Resonance Imaging, 2009, 29, 189-197.	3.4	47
106	Seeing the hand while reaching speeds up onâ€line responses to a sudden change in target position. Journal of Physiology, 2009, 587, 4605-4616.	2.9	44
107	Determining the cortical target of transcranial magnetic stimulation. NeuroImage, 2009, 47, 1319-1330.	4.2	22
108	Globally consistent depth sorting of overlapping 2D surfaces in a model using local recurrent interactions. Biological Cybernetics, 2008, 98, 305-337.	1.3	29

#	Article	IF	Citations
109	Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nature Medicine, 2008, 14, 459-465.	30.7	1,008
110	Texture segmentation in human perception: A combined modeling and fMRI study. Neuroscience, 2008, 151, 730-736.	2.3	28
111	Neural Correlates of Perceptual Choice and Decision Making during Fear-Disgust Discrimination. Journal of Neuroscience, 2007, 27, 2908-2917.	3.6	153
112	A computational model to link psychophysics and cortical cell activation patterns in human texture processing. Journal of Computational Neuroscience, 2007, 22, 255-282.	1.0	18
113	Cholinergic enhancement of episodic memory in healthy young adults. Psychopharmacology, 2005, 182, 170-179.	3.1	62
114	Accuracy of Stereotaxic Positioning of Transcranial Magnetic Stimulation. Brain Topography, 2005, 17, 253-259.	1.8	84
115	Neural mechanisms of human texture processing: Texture boundary detection and visual search. Spatial Vision, 2005, 18, 227-257.	1.4	22
116	Electric field properties of two commercial figure-8 coils in TMS: calculation of focality and efficiency. Clinical Neurophysiology, 2004, 115, 1697-1708.	1.5	244
117	DEVELOPMENT OF A NAVIGATION SYSTEM FOR TRANSCRANIAL MAGNETIC STIMULATION (TMS). , 2004, , .		0
118	Neural mechanisms of cortico–cortical interaction in texture boundary detection: a modeling approach. Neuroscience, 2003, 122, 921-939.	2.3	50
119	Chapter 19 Motor and phosphene thresholds: consequences of cortical anisotropy. Supplements To Clinical Neurophysiology, 2003, 56, 198-203.	2.1	4
120	Spatial congruence of neuronavigated transcranial magnetic stimulation and functional neuroimaging. Clinical Neurophysiology, 2002, 113, 462-468.	1.5	75
121	Linking Physics with Physiology in TMS: A Sphere Field Model to Determine the Cortical Stimulation Site in TMS. Neurolmage, 2002, 17, 1117-1130.	4.2	216
122	Motor thresholds in humans: a transcranial magnetic stimulation study comparing different pulse waveforms, current directions and stimulator types. Clinical Neurophysiology, 2001, 112, 250-258.	1.5	367
123	The navigation of transcranial magnetic stimulation. Psychiatry Research - Neuroimaging, 2001, 108, 123-131.	1.8	156
124	Commentary: $\hat{a} \in \infty$ Transcranial stimulation of the frontal lobes increases propensity of mind-wandering without changing meta-awareness $\hat{a} \in \{0, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,$		0
125	Guidelines for Burr Hole Surgery in Combination With Tumor Treating Fields for Glioblastoma: A Computational Study on Dose Optimization and Array Layout Planning. Frontiers in Human Neuroscience, 0, 16, .	2.0	O