
Nicolas Vitale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4670776/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nature Communications, 2014, 5, 3477.	12.8	418
2	Â2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 14082-14087.	7.1	281
3	Phospholipase D1: a key factor for the exocytotic machinery in neuroendocrine cells. EMBO Journal, 2001, 20, 2424-2434.	7.8	221
4	β-Arrestin-mediated ADP-ribosylation Factor 6 Activation and β2-Adrenergic Receptor Endocytosis. Journal of Biological Chemistry, 2001, 276, 42509-42513.	3.4	204
5	Scrib Controls Cdc42 Localization and Activity to Promote Cell Polarization during Astrocyte Migration. Current Biology, 2006, 16, 2395-2405.	3.9	198
6	Mammalian Scribble Forms a Tight Complex with the βPIX Exchange Factor. Current Biology, 2004, 14, 987-995.	3.9	195
7	Phospholipase D1 Production of Phosphatidic Acid at the Plasma Membrane Promotes Exocytosis of Large Dense-core Granules at a Late Stage. Journal of Biological Chemistry, 2007, 282, 21746-21757.	3.4	185
8	A role for phospholipase D1 in neurotransmitter release. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 15300-15305.	7.1	161
9	Regulated Exocytosis in Chromaffin Cells. Journal of Biological Chemistry, 1998, 273, 1373-1379.	3.4	155
10	Regulation of phospholipase D1 subcellular cycling through coordination of multiple membrane association motifs. Journal of Cell Biology, 2003, 162, 305-315.	5.2	154
11	GIT Proteins, A Novel Family of Phosphatidylinositol 3,4,5-Trisphosphate-stimulated GTPase-activating Proteins for ARF6. Journal of Biological Chemistry, 2000, 275, 13901-13906.	3.4	142
12	SNARE-catalyzed Fusion Events Are Regulated by Syntaxin1A–Lipid Interactions. Molecular Biology of the Cell, 2008, 19, 485-497.	2.1	134
13	Annexin 2 Promotes the Formation of Lipid Microdomains Required for Calcium-regulated Exocytosis of Dense-Core Vesicles. Molecular Biology of the Cell, 2005, 16, 1108-1119.	2.1	131
14	The GIT Family of ADP-ribosylation Factor GTPase-activating Proteins. Journal of Biological Chemistry, 2000, 275, 22373-22380.	3.4	125
15	Dynamics and Function of Phospholipase D and Phosphatidic Acid During Phagocytosis. Traffic, 2006, 7, 365-377.	2.7	123
16	Regulated Exocytosis in Chromaffin Cells. Journal of Biological Chemistry, 1997, 272, 2788-2793.	3.4	121
17	Calcium-regulated exocytosis of dense-core vesicles requires the activation of ADP-ribosylation factor (ARF)6 by ARF nucleotide binding site opener at the plasma membrane. Journal of Cell Biology, 2002, 159, 79-89.	5.2	118
18	Annexin II in exocytosis: catecholamine secretion requires the translocation of p36 to the subplasmalemmal region in chromaffin cells Journal of Cell Biology, 1996, 133, 1217-1236.	5.2	105

#	Article	IF	CITATIONS
19	Thematic Review Series: Exosomes and Microvesicles: Lipids as Key Components of their Biogenesis and Functions, Cholesterol and the journey of extracellular vesicles. Journal of Lipid Research, 2018, 59, 2255-2261.	4.2	94
20	The V-ATPase membrane domain is a sensor of granular pH that controls the exocytotic machinery. Journal of Cell Biology, 2013, 203, 283-298.	5.2	93
21	Lipids in Regulated Exocytosis: What are They Doing?. Frontiers in Endocrinology, 2013, 4, 125.	3.5	90
22	Phosphatidic Acid: From Pleiotropic Functions to Neuronal Pathology. Frontiers in Cellular Neuroscience, 2019, 13, 2.	3.7	90
23	Coupling actin and membrane dynamics during calcium-regulated exocytosis: a role for Rho and ARF GTPases. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1742, 37-49.	4.1	87
24	Cooperation of MICAL-L1, syndapin2, and phosphatidic acid in tubular recycling endosome biogenesis. Molecular Biology of the Cell, 2013, 24, 1776-1790.	2.1	87
25	Liveâ€cell imaging of phosphatidic acid dynamics in pollen tubes visualized by <scp>S</scp> po20pâ€derived biosensor. New Phytologist, 2014, 203, 483-494.	7.3	80
26	Fragile X Mental Retardation Protein (FMRP) controls diacylglycerol kinase activity in neurons. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3619-28.	7.1	79
27	IL1-receptor accessory protein-like 1 (IL1RAPL1), a protein involved in cognitive functions, regulates N-type Ca2+-channel and neurite elongation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9063-9068.	7.1	78
28	Comparative Characterization of Phosphatidic Acid Sensors and Their Localization during Frustrated Phagocytosis. Journal of Biological Chemistry, 2017, 292, 4266-4279.	3.4	78
29	Role of Phosphoinositide Signaling in the Control of Insulin Exocytosis. Molecular Endocrinology, 2005, 19, 3097-3106.	3.7	74
30	The RhoGAP RGA-2 and LET-502/ROCK achieve a balance of actomyosin-dependent forces in C. elegans epidermis to control morphogenesis. Development (Cambridge), 2007, 134, 2469-2479.	2.5	74
31	Annexin A2–dependent actin bundling promotes secretory granule docking to the plasma membrane and exocytosis. Journal of Cell Biology, 2015, 210, 785-800.	5.2	74
32	Identification of a Plasma Membrane-associated Guanine Nucleotide Exchange Factor for ARF6 in Chromaffin Cells. Journal of Biological Chemistry, 2000, 275, 15637-15644.	3.4	71
33	The Small GTPase RalA Controls Exocytosis of Large Dense Core Secretory Granules by Interacting with ARF6-dependent Phospholipase D1. Journal of Biological Chemistry, 2005, 280, 29921-29928.	3.4	71
34	Ral GTPases promote breast cancer metastasis by controlling biogenesis and organ targeting of exosomes. ELife, 2021, 10, .	6.0	70
35	Phospholipase D in calcium-regulated exocytosis: Lessons from chromaffin cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 936-941.	2.4	67
36	Thyrotropin receptor trafficking relies on the hScrib–βPIX–GIT1–ARF6 pathway. EMBO Journal, 2005, 24, 1364-1374.	7.8	65

#	Article	IF	CITATIONS
37	Phospholipase D1 is specifically required for regulated secretion of von Willebrand factor from endothelial cells. Blood, 2009, 113, 973-980.	1.4	62
38	ARF6 Regulates the Synthesis of Fusogenic Lipids for Calcium-regulated Exocytosis in Neuroendocrine Cells. Journal of Biological Chemistry, 2009, 284, 4836-4845.	3.4	61
39	Endogenous ARF6 Interacts with Rac1 upon Angiotensin II Stimulation to Regulate Membrane Ruffling and Cell Migration. Molecular Biology of the Cell, 2007, 18, 501-511.	2.1	60
40	Exocytosis: The Chromaffin Cell As a Model System. Annals of the New York Academy of Sciences, 2002, 971, 178-183.	3.8	59
41	Lipid domain–dependent regulation of single-cell wound repair. Molecular Biology of the Cell, 2014, 25, 1867-1876.	2.1	59
42	Lipid Dynamics in Exocytosis. Cellular and Molecular Neurobiology, 2010, 30, 1335-1342.	3.3	56
43	Ephrin B1 maintains apical adhesion of neural progenitors. Development (Cambridge), 2013, 140, 2082-2092.	2.5	56
44	ARD1, a 64-kDa bifunctional protein containing an 18-kDa GTP-binding ADP-ribosylation factor domain and a 46-kDa GTPase-activating domain Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 1941-1944.	7.1	53
45	Functional Implication of Neuronal Calcium Sensor-1 and Phosphoinositol 4-Kinase-β Interaction in Regulated Exocytosis of PC12 Cells. Journal of Biological Chemistry, 2006, 281, 18098-18111.	3.4	53
46	Protein–Phospholipid Interaction Motifs: A Focus on Phosphatidic Acid. Biomolecules, 2018, 8, 20.	4.0	53
47	PIKfyve Negatively Regulates Exocytosis in Neurosecretory Cells. Journal of Biological Chemistry, 2008, 283, 2804-2813.	3.4	51
48	Xâ€linked mental retardation: focus on synaptic function and plasticity. Journal of Neurochemistry, 2009, 109, 1-14.	3.9	51
49	The Synaptic Ribbon Is a Site of Phosphatidic Acid Generation in Ribbon Synapses. Journal of Neuroscience, 2011, 31, 15996-16011.	3.6	51
50	The Coffin-Lowry syndrome-associated protein RSK2 is implicated in calcium-regulated exocytosis through the regulation of PLD1. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8434-8439.	7.1	50
51	Phosphatidic acid in neuronal development: A node for membrane and cytoskeleton rearrangements. Biochimie, 2014, 107, 51-57.	2.6	50
52	Trimeric G Proteins Control Regulated Exocytosis in Bovine Chromaffin Cells: Sequential Involvement of Go Associated With Secretory Granules and Gi3Bound to the Plasma Membrane. European Journal of Neuroscience, 1996, 8, 1275-1285.	2.6	48
53	βPIX-activated Rac1 stimulates the activation of phospholipase D, which is associated with exocytosis in neuroendocrine cells. Journal of Cell Science, 2009, 122, 798-806.	2.0	47
54	ARF1 controls proliferation of breast cancer cells by regulating the retinoblastoma protein. Oncogene, 2011, 30, 3846-3861.	5.9	47

#	Article	IF	CITATIONS
55	Guanine Nucleotide Exchange on ADP-ribosylation Factors Catalyzed by Cytohesin-1 and Its Sec7 Domain. Journal of Biological Chemistry, 1998, 273, 26543-26548.	3.4	45
56	Extracellular Cu2+ pools and their detection: From current knowledge to next-generation probes. Coordination Chemistry Reviews, 2021, 433, 213727.	18.8	45
57	Genetically Encoded Probes for Phosphatidic Acid. Methods in Cell Biology, 2012, 108, 445-459.	1.1	44
58	The Coffin-Lowry Syndrome-Associated Protein RSK2 Regulates Neurite Outgrowth through Phosphorylation of Phospholipase D1 (PLD1) and Synthesis of Phosphatidic Acid. Journal of Neuroscience, 2013, 33, 19470-19479.	3.6	42
59	Regulated Secretion in Chromaffin Cells. Annals of the New York Academy of Sciences, 2002, 971, 193-200.	3.8	38
60	ADP-Ribosylation Factor 6 Regulates Mammalian Myoblast Fusion through Phospholipase D1 and Phosphatidylinositol 4,5-Bisphosphate Signaling Pathways. Molecular Biology of the Cell, 2010, 21, 2412-2424.	2.1	38
61	Diacylglycerol stimulates acrosomal exocytosis by feeding into a PKC- and PLD1-dependent positive loop that continuously supplies phosphatidylinositol 4,5-bisphosphate. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 1186-1199.	2.4	38
62	Lipids implicated in the journey of a secretory granule: from biogenesis to fusion. Journal of Neurochemistry, 2016, 137, 904-912.	3.9	36
63	Regulation of exocytosis in adrenal chromaffin cells: focus on ARF and Rho GTPases. Cellular Signalling, 2003, 15, 893-899.	3.6	32
64	IL1RAPL1 controls inhibitory networks during cerebellar development in mice. European Journal of Neuroscience, 2009, 30, 1476-1486.	2.6	32
65	Characterization of a GTPase-activating Protein That Stimulates GTP Hydrolysis by Both ADP-ribosylation Factor (ARF) and ARF-like Proteins. Journal of Biological Chemistry, 1996, 271, 24005-24009.	3.4	31
66	HIV-1 Tat protein inhibits neurosecretion by binding to phosphatidylinositol 4,5-bisphosphate. Journal of Cell Science, 2013, 126, 454-463.	2.0	31
67	ADP Ribosylation Factor 6 (ARF6) Promotes Acrosomal Exocytosis by Modulating Lipid Turnover and Rab3A Activation. Journal of Biological Chemistry, 2015, 290, 9823-9841.	3.4	31
68	Molecular Characterization of the GTPase-activating Domain of ADP-ribosylation Factor Domain Protein 1 (ARD1). Journal of Biological Chemistry, 1998, 273, 2553-2560.	3.4	30
69	Regulation of Neuroendocrine Exocytosis by the ARF6 GTPase-activating Protein GIT1. Journal of Biological Chemistry, 2006, 281, 7919-7926.	3.4	30
70	Dietary arachidonic acid as a risk factor for age-associated neurodegenerative diseases: Potential mechanisms. Biochimie, 2016, 130, 168-177.	2.6	30
71	Cyclophilin A enables specific HIV-1 Tat palmitoylation and accumulation in uninfected cells. Nature Communications, 2018, 9, 2251.	12.8	30
72	Localization of ADP-ribosylation factor domain protein 1 (ARD1) in lysosomes and Golgi apparatus. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 8613-8618.	7.1	28

#	Article	IF	CITATIONS
73	Ral Isoforms Are Implicated in FcγR-Mediated Phagocytosis: Activation of Phospholipase D by RalA. Journal of Immunology, 2010, 185, 2942-2950.	0.8	28
74	Lack of the presynaptic RhoGAP protein oligophrenin1 leads to cognitive disabilities through dysregulation of the cAMP/PKA signalling pathway. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130160.	4.0	28
75	Oligophrenin-1 Connects Exocytotic Fusion to Compensatory Endocytosis in Neuroendocrine Cells. Journal of Neuroscience, 2015, 35, 11045-11055.	3.6	28
76	PLD1 participates in BDNF-induced signalling in cortical neurons. Scientific Reports, 2015, 5, 14778.	3.3	27
77	Interaction of the GTP-binding and GTPase-activating Domains of ARD1 Involves the Effector Region of the ADP-ribosylation Factor Domain. Journal of Biological Chemistry, 1997, 272, 3897-3904.	3.4	26
78	High prevalence for obesity in severe COVID-19: Possible links and perspectives towards patient stratification. Biochimie, 2020, 179, 257-265.	2.6	26
79	Phosphorylation cycling of Annexin A2 Tyr23 is critical for calcium-regulated exocytosis in neuroendocrine cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 1207-1217.	4.1	25
80	Mono- and Poly-unsaturated Phosphatidic Acid Regulate Distinct Steps of Regulated Exocytosis in Neuroendocrine Cells. Cell Reports, 2020, 32, 108026.	6.4	24
81	Rab11 is phosphorylated by classical and novel protein kinase C isoenzymes upon sustained phorbol ester activation. Biology of the Cell, 2012, 104, 102-115.	2.0	22
82	Involvement of ADP-ribosylation Factor 1 in Cholera Toxin-induced Morphological Changes of Chinese Hamster Ovary Cells. Journal of Biological Chemistry, 2001, 276, 22838-22843.	3.4	21
83	The GTPase RalA Regulates Different Steps of the Secretory Process in Pancreatic β-Cells. PLoS ONE, 2009, 4, e7770.	2.5	20
84	The Long Coiled-Coil Protein NECC2 Is Associated to Caveolae and MODULATES NGF/TrkA Signaling IN PC12 CELLS. PLoS ONE, 2013, 8, e73668.	2.5	20
85	Specific Functional Interaction of Human Cytohesin-1 and ADP-ribosylation Factor Domain Protein (ARD1). Journal of Biological Chemistry, 2000, 275, 21331-21339.	3.4	19
86	Insight in the exocytotic process in chromaffin cells: Regulation by trimeric and monomeric G proteins. Biochimie, 2000, 82, 365-373.	2.6	19
87	The Rho Guanine Nucleotide Exchange Factors Intersectin 1L and β-Pix Control Calcium-Regulated Exocytosis in Neuroendocrine PC12 Cells. Cellular and Molecular Neurobiology, 2010, 30, 1327-1333.	3.3	18
88	Phospholipase D: A new mediator during high phosphate-induced vascular calcification associated with chronic kidney disease. Journal of Cellular Physiology, 2019, 234, 4825-4839.	4.1	18
89	Lipid remodelling in neuroendocrine secretion. Biology of the Cell, 2017, 109, 381-390.	2.0	17
90	The Coffin–Lowry Syndromeâ€associated Protein RSK2 Controls Neuroendocrine Secretion through the Regulation of Phospholipase D1 at the Exocytotic Sites. Annals of the New York Academy of Sciences, 2009, 1152, 201-208.	3.8	16

#	Article	IF	CITATIONS
91	Synthesis of fusogenic lipids through activation of phospholipase D1 by GTPases and the kinase RSK2 is required for calcium-regulated exocytosis in neuroendocrine cells. Biochemical Society Transactions, 2010, 38, 167-171.	3.4	16
92	Chromogranin A preferential interaction with Golgi phosphatidic acid induces membrane deformation and contributes to secretory granule biogenesis. FASEB Journal, 2020, 34, 6769-6790.	0.5	16
93	Exocytosis in single chromaffin cells: regulation by a secretory granule-associated Go protein. Cellular and Molecular Neurobiology, 1997, 17, 71-87.	3.3	15
94	Role of Phospholipase D-Derived Phosphatidic Acid in Regulated Exocytosis and Neurological Disease. Handbook of Experimental Pharmacology, 2018, 259, 115-130.	1.8	15
95	Characterization of a GDP Dissociation Inhibitory Region of ADP-ribosylation Factor Domain Protein ARD1. Journal of Biological Chemistry, 1997, 272, 25077-25082.	3.4	14
96	Regulation of Phospholipase D by Arf6 during FcγR-Mediated Phagocytosis. Journal of Immunology, 2019, 202, 2971-2981.	0.8	14
97	Fibrillarin Ribonuclease Activity is Dependent on the GAR Domain and Modulated by Phospholipids. Cells, 2020, 9, 1143.	4.1	14
98	The Coffin-Lowry Syndrome-Associated Protein rsk2 and Neurosecretion. Cellular and Molecular Neurobiology, 2010, 30, 1401-1406.	3.3	13
99	Fragile X syndrome: Are signaling lipids the missing culprits?. Biochimie, 2016, 130, 188-194.	2.6	13
100	Effects of phospholipase D during cultured osteoblast mineralization and bone formation. Journal of Cellular Biochemistry, 2019, 120, 5923-5935.	2.6	13
101	RALB GTPase: a critical regulator of DR5 expression and TRAIL sensitivity in KRAS mutant colorectal cancer. Cell Death and Disease, 2020, 11, 930.	6.3	12
102	Melittin promotes exocytosis in neuroendocrine cells through the activation of phospholipase A2. Regulatory Peptides, 2010, 165, 111-116.	1.9	11
103	Identification of Lysosomal and Golgi Localization Signals in GAP and ARF Domains of ARF Domain Protein 1. Molecular and Cellular Biology, 2000, 20, 7342-7352.	2.3	9
104	EPHB6 controls catecholamine biosynthesis by up-regulating tyrosine hydroxylase transcription in adrenal gland chromaffin cells. Journal of Biological Chemistry, 2019, 294, 6871-6887.	3.4	9
105	Regulation of exocytosis in chromaffin cells by phosducin-like protein, a protein interacting with G protein Î ² Î ³ subunits. FEBS Letters, 2000, 480, 184-188.	2.8	8
106	The caveolaeâ€associated coiledâ€coil protein, <scp>NECC</scp> 2, regulates insulin signalling in Adipocytes. Journal of Cellular and Molecular Medicine, 2018, 22, 5648-5661.	3.6	8
107	Of local translation control and lipid signaling in neurons. Advances in Biological Regulation, 2019, 71, 194-205.	2.3	8
108	Phosphatidic acid: Mono- and poly-unsaturated forms regulate distinct stages of neuroendocrine exocytosis. Advances in Biological Regulation, 2021, 79, 100772.	2.3	8

#	Article	IF	CITATIONS
109	HIV-1 Tat protein perturbs diacylglycerol production at the plasma membrane of neurosecretory cells during exocytosis. Communicative and Integrative Biology, 2013, 6, e25145.	1.4	7
110	Somatostatin analogue pasireotide (SOM230) inhibits catecholamine secretion in human pheochromocytoma cells. Cancer Letters, 2022, 524, 232-244.	7.2	7
111	Phospholipase D1-generated phosphatidic acid modulates secretory granule trafficking from biogenesis to compensatory endocytosis in neuroendocrine cells. Advances in Biological Regulation, 2022, 83, 100844.	2.3	6
112	Phosphatidylinositol (4,5)-bisphosphate-mediated pathophysiological effect of HIV-1 Tat protein. Biochimie, 2017, 141, 80-85.	2.6	5
113	Annexin A2 Egress during Calcium-Regulated Exocytosis in Neuroendocrine Cells. Cells, 2020, 9, 2059.	4.1	5
114	Hormones Secretion and Rho GTPases in Neuroendocrine Tumors. Cancers, 2020, 12, 1859.	3.7	5
115	Phosphatidic acid metabolism regulates neuroendocrine secretion but is not under the direct control of lipins. IUBMB Life, 2020, 72, 533-543.	3.4	5
116	[35] Purification and properties of ARD1, an ADP-ribosylation factor (ARF)-related protein with GTPase-activating domain. Methods in Enzymology, 2001, 329, 324-334.	1.0	4
117	Different species of phosphatidic acid are produced during neuronal growth and neurosecretion. OCL - Oilseeds and Fats, Crops and Lipids, 2018, 25, D408.	1.4	4
118	αIIâ€spectrin controls calciumâ€regulated exocytosis in neuroendocrine chromaffin cells through neuronal Wiskott–Aldrich Syndrome protein interaction. IUBMB Life, 2020, 72, 544-552.	3.4	4
119	The atypical Rho GTPase RhoU interacts with intersectin-2 to regulate endosomal recycling pathways. Journal of Cell Science, 2020, 133, .	2.0	4
120	The receptor tyrosine kinase EPHB6 regulates catecholamine exocytosis in adrenal gland chromaffin cells. Journal of Biological Chemistry, 2020, 295, 7653-7668.	3.4	4
121	Bovine Chromaffin Cells: Culture and Fluorescence Assay for Secretion. Methods in Molecular Biology, 2021, 2233, 169-179.	0.9	4
122	Dysfunction of calcium-regulated exocytosis at a single-cell level causes catecholamine hypersecretion in patients with pheochromocytoma. Cancer Letters, 2022, 543, 215765.	7.2	4
123	cAMP and Pyk2 interact to regulate prostate cells proliferation and function. Cancer Biology and Therapy, 2009, 8, 236-242.	3.4	3
124	Transmission Electron and on Plasma Sheets to Study Secretory Docking. Methods in Molecular Biology, 2021, 2233, 301-309.	0.9	3
125	Lipid Modifications During Membrane Fusion in Regulated Exocytosis. Current Chemical Biology, 2007, 1, 161-166.	0.5	2
126	Therapeutic Potentials of Recently Identified PLD Inhibitors. Current Chemical Biology, 2010, 4, 244-249.	0.5	2

#	Article	IF	CITATIONS
127	Lipid Modifications During Membrane Fusion in Regulated Exocytosis. Current Chemical Biology, 2007, 1, 161-166.	0.5	1
128	Therapeutic Potentials of Recently Identified PLD Inhibitors. Current Chemical Biology, 2010, 4, 244-249.	0.5	1
129	Protocol for electron microscopy ultrastructural localization of the fusogenic lipid phosphatidic acid on plasma membrane sheets from chromaffin cells. STAR Protocols, 2021, 2, 100464.	1.2	1
130	Annexin A2–dependent actin bundling promotes secretory granule docking to the plasma membrane and exocytosis. Journal of General Physiology, 2015, 146, 1463OIA51.	1.9	1
131	Correction for Zeniou-Meyer et al., The Coffin–Lowry syndrome-associated protein RSK2 is implicated in calcium-regulated exocytosis through the regulation of PLD1. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8398-8398.	7.1	0
132	A Lipidomics Approach to Measure Phosphatidic Acid Species in Subcellular Membrane Fractions Obtained from Cultured Cells. Bio-protocol, 2021, 11, e4066.	0.4	0
133	Phospholipase D1â€induced phosphatidic acid at the plasma membrane promotes a late stage of large denseâ€core. FASEB Journal, 2007, 21, A604.	0.5	0
134	Genetically encoded probes for phosphatidic acid. FASEB Journal, 2011, 25, 934.3.	0.5	0
135	Protéines G trimériques et transport vésiculaire : implication d'une protéine Go granulaire dans une étape de l'exocytose contrÃ1ée. Medecine/Sciences, 1995, 11, 1034.	0.2	0
136	Abstract 704: RALB GTPase: A critical regulator of DR5 cell surface expression and TRAIL sensitivity inRASmutant colorectal cancer. , 2019, , .		0
137	Phospholipase D. , 2007, , 75-83.		0
138	Measurements of by Antibody and Quantification of Endocytic Vesicle Distribution in Adrenal Chromaffin Cells. Methods in Molecular Biology, 2021, 2233, 43-51.	0.9	0