Laura Soucek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4669969/publications.pdf

Version: 2024-02-01

75 papers

6,042 citations

34 h-index 51 g-index

78 all docs 78 docs citations

times ranked

78

10403 citing authors

#	Article	IF	CITATIONS
1	MYC Inhibition Halts Metastatic Breast Cancer Progression by Blocking Growth, Invasion, and Seeding. Cancer Research Communications, 2022, 2, 110-130.	1.7	10
2	Going for a "KDIP―in colorectal cancer treatment. Clinical and Translational Discovery, 2022, 2, .	0.5	O
3	MYC inhibitors in multiple myeloma. , 2021, 4, 842-865.		5
4	An "-omycs―Toolbox to Work with MYC. Methods in Molecular Biology, 2021, 2318, 1-11.	0.9	0
5	The Wnt signaling receptor Fzd9 is essential for Myc-driven tumorigenesis in pancreatic islets. Life Science Alliance, 2021, 4, e201900490.	2.8	4
6	Integrated requirement of nonâ€specific and sequenceâ€specific DNA binding in Mycâ€driven transcription. EMBO Journal, 2021, 40, e105464.	7.8	24
7	The long journey to bring a Myc inhibitor to the clinic. Journal of Cell Biology, 2021, 220, .	5.2	51
8	Frequent mutations of FBXO11 highlight BCL6 as a therapeutic target in Burkitt lymphoma. Blood Advances, 2021, 5, 5239-5257.	5.2	7
9	A spotlight on cancer researchers in Spain: new paradigms and disruptive ideas. Clinical and Translational Oncology, 2020, 22, 798-801.	2.4	O
10	Epigenetic <i>SMAD3</i> Repression in Tumor-Associated Fibroblasts Impairs Fibrosis and Response to the Antifibrotic Drug Nintedanib in Lung Squamous Cell Carcinoma. Cancer Research, 2020, 80, 276-290.	0.9	25
11	MYC, MYCL, and MYCN as therapeutic targets in lung cancer. Expert Opinion on Therapeutic Targets, 2020, 24, 101-114.	3.4	69
12	Structural and Biophysical Insights into the Function of the Intrinsically Disordered Myc Oncoprotein. Cells, 2020, 9, 1038.	4.1	57
13	MYC Instructs and Maintains Pancreatic Adenocarcinoma Phenotype. Cancer Discovery, 2020, 10, 588-607.	9.4	121
14	Blocking Myc to Treat Cancer: Reflecting on Two Decades of Omomyc. Cells, 2020, 9, 883.	4.1	85
15	Finding MYCure. Molecular and Cellular Oncology, 2019, 6, e1618178.	0.7	6
16	Editorial overview: Peptides in cancer. Current Opinion in Pharmacology, 2019, 47, iii-v.	3.5	0
17	Targeting Antitumoral Proteins to Breast Cancer by Local Administration of Functional Inclusion Bodies. Advanced Science, 2019, 6, 1900849.	11.2	34
18	Intrinsic cell-penetrating activity propels Omomyc from proof of concept to viable anti-MYC therapy. Science Translational Medicine, 2019, 11 , .	12.4	150

#	Article	IF	CITATIONS
19	OA08.07 Aberrant Epigenetic SMAD3 Signaling in Tumor-Associated Fibroblasts Modulates Fibrosis and Response to Nintedanib in NSCLC. Journal of Thoracic Oncology, 2019, 14, S228.	1.1	0
20	Inhibition of <i>MYC</i> attenuates tumor cell selfâ€renewal and promotes senescence in SMARCB1â€deficient Group 2 atypical teratoid rhabdoid tumors to suppress tumor growth <i>in vivo</i> . International Journal of Cancer, 2019, 144, 1983-1995.	5.1	43
21	Abstract LB-034: Myc instructs and maintains pancreatic adenocarcinoma phenotype. , 2019, , .		0
22	Abstract 1225: Aberrant SMAD3 signaling in tumor-associated fibroblasts modulates fibrosis and response to the anti-fibrotic drug nintedanib in non-small cell lung cancer., 2019,,.		0
23	BET inhibition is an effective approach against KRAS-driven PDAC and NSCLC. Oncotarget, 2018, 9, 18734-18746.	1.8	12
24	Myc and Ras, the Bonnie and Clyde of immune evasion. Translational Cancer Research, 2018, 7, S457-S459.	1.0	12
25	Abstract 3956: Omomyc-based cell-penetrating peptides: From proof of concept to a clinically viable anti-Myc therapy. , 2018, , .		0
26	Abstract 3351: Myc inhibition by Omomyc impairs melanoma growth and progression through genome-wide gene expression reprogramming. , 2018, , .		0
27	Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nature Reviews Cancer, 2017, 17, 254-268.	28.4	527
28	Drugging the 'undruggable' cancer targets. Nature Reviews Cancer, 2017, 17, 502-508.	28.4	620
29	Drugging the 'undruggable' cancer targets. Nature Reviews Cancer, 2017, 17, 502-508. Strategies to Inhibit Myc and Their Clinical Applicability. Frontiers in Cell and Developmental Biology, 2017, 5, 10.	28.4	230
	Strategies to Inhibit Myc and Their Clinical Applicability. Frontiers in Cell and Developmental Biology,		
29	Strategies to Inhibit Myc and Their Clinical Applicability. Frontiers in Cell and Developmental Biology, 2017, 5, 10.	3.7	230
30	Strategies to Inhibit Myc and Their Clinical Applicability. Frontiers in Cell and Developmental Biology, 2017, 5, 10. Pancreatic cancer heterogeneity and response to Mek inhibition. Oncogene, 2017, 36, 5639-5647. Biophysical characterization of the b-HLH-LZ of Î"Max, an alternatively spliced isoform of Max found in tumor cells: Towards the validation of a tumor suppressor role for the Max homodimers. PLoS ONE,	3.7 5.9	230
29 30 31	Strategies to Inhibit Myc and Their Clinical Applicability. Frontiers in Cell and Developmental Biology, 2017, 5, 10. Pancreatic cancer heterogeneity and response to Mek inhibition. Oncogene, 2017, 36, 5639-5647. Biophysical characterization of the b-HLH-LZ of Î"Max, an alternatively spliced isoform of Max found in tumor cells: Towards the validation of a tumor suppressor role for the Max homodimers. PLoS ONE, 2017, 12, e0174413. Abstract 2167: Preclinical validation of an Omomyc cell-penetrating peptide as a viable anti-Myc	3.7 5.9	230 19 11
29 30 31 32	Strategies to Inhibit Myc and Their Clinical Applicability. Frontiers in Cell and Developmental Biology, 2017, 5, 10. Pancreatic cancer heterogeneity and response to Mek inhibition. Oncogene, 2017, 36, 5639-5647. Biophysical characterization of the b-HLH-LZ of î"Max, an alternatively spliced isoform of Max found in tumor cells: Towards the validation of a tumor suppressor role for the Max homodimers. PLoS ONE, 2017, 12, e0174413. Abstract 2167: Preclinical validation of an Omomyc cell-penetrating peptide as a viable anti-Myc therapy., 2017, , .	3.7 5.9 2.5	230 19 11 0
29 30 31 32	Strategies to Inhibit Myc and Their Clinical Applicability. Frontiers in Cell and Developmental Biology, 2017, 5, 10. Pancreatic cancer heterogeneity and response to Mek inhibition. Oncogene, 2017, 36, 5639-5647. Biophysical characterization of the b-HLH-LZ of Î*Max, an alternatively spliced isoform of Max found in tumor cells: Towards the validation of a tumor suppressor role for the Max homodimers. PLoS ONE, 2017, 12, e0174413. Abstract 2167: Preclinical validation of an Omomyc cell-penetrating peptide as a viable anti-Myc therapy., 2017,,. Ibrutinib repurposing: from B-cell malignancies to solid tumors. Oncoscience, 2016, 3, 147-148. Growth suppression by MYC inhibition in small cell lung cancer cells with TP53 and RB1 inactivation.	3.7 5.9 2.5	230 19 11 0

#	Article	IF	CITATIONS
37	Tamoxifen Administration to Mice. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot077966.	0.3	27
38	Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis, 2015, 36, S254-S296.	2.8	239
39	The effect of environmental chemicals on the tumor microenvironment. Carcinogenesis, 2015, 36, \$160-\$183.	2.8	97
40	The Estrogen Receptor Fusion System in Mouse Models: A Reversible Switch. Cold Spring Harbor Protocols, 2015, 2015, pdb.top069815.	0.3	12
41	Ibrutinib Exerts Potent Antifibrotic and Antitumor Activities in Mouse Models of Pancreatic Adenocarcinoma. Cancer Research, 2015, 75, 1675-1681.	0.9	95
42	Abstract A52: Myc is required for maintenance of KRasG12D-driven pancreatic cancer and its associated microenvironment. , 2015, , .		1
43	Abstract 2645: Preclinical validation of Myc inhibition by a new generation of Omomyc-based inhibitors. , 2015, , .		0
44	Abstract 396: Ibrutinib exerts potent antifibrotic activity in a mouse model of pancreatic adenocarcinoma., 2015,,.		0
45	Abstract B23: Pushing Myc inhibition towards the clinic by direct delivery of cell-penetrating peptides. , 2015, , .		0
46	Abstract B09: Myc is required for maintenance of KRasG12D-driven pancreatic cancer and its associated microenvironment. , 2015, , .		0
47	Abstract PR10: Preclinical validation of Myc inhibition by a new generation of Omomyc-based cell penetrating peptides., 2015,,.		0
48	Myc inhibition is effective against glioma and reveals a role for Myc in proficient mitosis. Nature Communications, 2014, 5, 4632.	12.8	144
49	773: A novel pharmacological approach to inhibit Myc in cancer. European Journal of Cancer, 2014, 50, S186.	2.8	0
50	Inhibition of Myc family proteins eradicates KRas-driven lung cancer in mice. Genes and Development, 2013, 27, 504-513.	5.9	250
51	The Myc World Within Reach. Methods in Molecular Biology, 2013, 1012, 1-6.	0.9	0
52	Abstract 4956: Pharmacological inhibition of Bruton's Tyrosine Kinase (BTK) as a therapy for insulinoma and pancreatic ductal adenocarcinoma, 2013,,.		0
53	Role of c-MYC in alternative activation of human macrophages and tumor-associated macrophage biology. Blood, 2012, 119, 411-421.	1.4	292
54	749 Myc – a Non Redundant Function in Cancer. European Journal of Cancer, 2012, 48, S177.	2.8	0

#	Article	IF	CITATIONS
55	751 MYC Inhibition as a Therapeutic Strategy in Glioma. European Journal of Cancer, 2012, 48, S178.	2.8	o
56	916 Modeling Pharmacological Inhibition of Bruton's Tyrosine Kinase (BTK) as a Therapy for Insulinoma and Pancreatic Ductal Adenocarcinoma. European Journal of Cancer, 2012, 48, S222.	2.8	1
57	Tumor microenvironment: becoming sick of Myc. Cellular and Molecular Life Sciences, 2012, 69, 931-934.	5.4	63
58	Modeling Pharmacological Inhibition of Mast Cell Degranulation as a Therapy for Insulinoma. Neoplasia, 2011, 13, 1093-IN43.	5. 3	50
59	The Action Mechanism of the Myc Inhibitor Termed Omomyc May Give Clues on How to Target Myc for Cancer Therapy. PLoS ONE, 2011, 6, e22284.	2.5	93
60	Endogenous Myc maintains the tumor microenvironment. Genes and Development, 2011, 25, 907-916.	5.9	162
61	Abstract 469: Mast cell inhibition by the BTK inhibitor PCI-32765 as a potential therapy in pancreatic cancer., 2011,,.		0
62	The ups and downs of Myc biology. Current Opinion in Genetics and Development, 2010, 20, 91-95.	3.3	152
63	Acute Overexpression of Myc in Intestinal Epithelium Recapitulates Some but Not All the Changes Elicited by Wnt/β-Catenin Pathway Activation. Molecular and Cellular Biology, 2009, 29, 5306-5315.	2.3	49
64	Modelling Myc inhibition as a cancer therapy. Nature, 2008, 455, 679-683.	27.8	706
65	Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nature Medicine, 2007, 13, 1211-1218.	30.7	449
66	Bcl-xL gain of function and p19ARF loss of function cooperate oncogenically with Myc in vivo by distinct mechanisms. Cancer Cell, 2006, 10, 113-120.	16.8	39
67	Reversible Kinetic Analysis of Myc Targets In vivo Provides Novel Insights into Myc-Mediated Tumorigenesis. Cancer Research, 2006, 66, 4591-4601.	0.9	71
68	Temporal dissection of p53 function in vitro and in vivo. Nature Genetics, 2005, 37, 718-726.	21.4	174
69	Omomyc expression in skin prevents Myc-induced papillomatosis. Cell Death and Differentiation, 2004, 11, 1038-1045.	11.2	55
70	c-Myc recruits P-TEFb for transcription, cellular proliferation and apoptosis. Oncogene, 2003, 22, 5707-5711.	5.9	159
71	NGF-dependent and tissue-specific transcription of vgfis regulated by a CREB-p300 and bHLH factor interaction. FEBS Letters, 2002, 510, 50-56.	2.8	24
72	Myc—Is this the oncogene from Hell?. Cancer Cell, 2002, 1, 406-408.	16.8	39

Laura Soucek

#	Article	IF	CITATIONS
73	Omomyc, a potential Myc dominant negative, enhances Myc-induced apoptosis. Cancer Research, 2002, 62, 3507-10.	0.9	115
74	Making decisions through Myc. FEBS Letters, 2001, 490, 153-162.	2.8	115
75	Design and properties of a Myc derivative that efficiently homodimerizes. Oncogene, 1998, 17, 2463-2472.	5.9	154