Gail Christeson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4669338/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Borehole Seismic Observations From the Chicxulub Impact Drilling: Implications for Seismic Reflectivity and Impact Damage. Geochemistry, Geophysics, Geosystems, 2022, 23, .	2.5	1
2	Ocean resurge-induced impact melt dynamics on the peak-ring of the Chicxulub impact structure, Mexico. International Journal of Earth Sciences, 2021, 110, 2619-2636.	1.8	5
3	Hydrothermal Models Constrained by Fineâ€Scale Seismic Velocities Confirm Hydrothermal Cooling of 7–63ÂMa South Atlantic Crust. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021612.	3.4	11
4	Shaping of the Present-Day Deep Biosphere at Chicxulub by the Impact Catastrophe That Ended the Cretaceous. Frontiers in Microbiology, 2021, 12, 668240.	3.5	8
5	Mapping the Chicxulub Impact Stratigraphy and Peak Ring Using Drilling and Seismic Data. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006938.	3.6	8
6	Tectonic Activity Near the Rio Grande Rise Increases Fluid Flux in Old Oceanic Crust. Geophysical Research Letters, 2021, 48, e2021GL094624.	4.0	0
7	70 million years of seafloor spreading and magmatism in the South Atlantic. Earth and Planetary Science Letters, 2021, 574, 117173.	4.4	2
8	Explosive interaction of impact melt and seawater following the Chicxulub impact event. Geology, 2020, 48, 108-112.	4.4	25
9	Probing the hydrothermal system of the Chicxulub impact crater. Science Advances, 2020, 6, eaaz3053.	10.3	69
10	South Atlantic Transect: Variations in Oceanic Crustal Structure at 31°S. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009017.	2.5	21
11	Intraplate deformation of oceanic crust near the Rio Grande Rise in the South Atlantic. Tectonophysics, 2020, 790, 228543.	2.2	11
12	The Eastern North American Margin Community Seismic Experiment: An Amphibious Active―and Passiveâ€Source Dataset. Seismological Research Letters, 2020, 91, 533-540.	1.9	15
13	Impactâ€Induced Porosity and Microfracturing at the Chicxulub Impact Structure. Journal of Geophysical Research E: Planets, 2019, 124, 1960-1978.	3.6	23
14	U-Pb memory behavior in Chicxulub's peak ring — Applying U-Pb depth profiling to shocked zircon. Chemical Geology, 2019, 525, 356-367.	3.3	15
15	Seismic Layer 2A: Evolution and Thickness From 0―to 70â€Ma Crust in the Slowâ€Intermediate Spreading South Atlantic. Journal of Geophysical Research: Solid Earth, 2019, 124, 7633-7651.	3.4	32
16	The first day of the Cenozoic. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19342-19351.	7.1	100
17	Longâ€Lasting Evolution of Layer 2A in the Western South Atlantic: Evidence for Lowâ€Temperature Hydrothermal Circulation in Old Oceanic Crust. Journal of Geophysical Research: Solid Earth, 2019, 124, 2252-2273.	3.4	30
18	Synthesis of Oceanic Crustal Structure From Twoâ€Dimensional Seismic Profiles. Reviews of Geophysics, 2019, 57, 504-529.	23.0	138

#	Article	IF	CITATIONS
19	Postmagmatic Tectonic Evolution of the Outer Izuâ€Bonin Forearc Revealed by Sediment Basin Structure and Vein Microstructure Analysis: Implications for a 15 Ma Hiatus Between Pacific Plate Subduction Initiation and Forearc Extension. Geochemistry, Geophysics, Geosystems, 2019, 20, 5867-5895.	2.5	6
20	Ocean Drilling Perspectives on Meteorite Impacts. Oceanography, 2019, 32, 120-134.	1.0	3
21	Structure and origin of the rifted margin of the northern Gulf of Mexico. , 2018, 14, 1804-1817.		37
22	Rapid recovery of life at ground zero of the end-Cretaceous mass extinction. Nature, 2018, 558, 288-291.	27.8	123
23	Extraordinary rocks from the peak ring of the Chicxulub impact crater: P-wave velocity, density, and porosity measurements from IODP/ICDP Expedition 364. Earth and Planetary Science Letters, 2018, 495, 1-11.	4.4	65
24	Subduction initiation and ophiolite crust: new insights from IODP drilling. International Geology Review, 2017, 59, 1439-1450.	2.1	145
25	Physical properties and seismic structure of <scp>lzu</scp> â€ <scp>B</scp> oninâ€ <scp>M</scp> ariana foreâ€arc crust: Results from IODP <scp>E</scp> xpedition 352 and comparison with oceanic crust. Geochemistry, Geophysics, Geosystems, 2016, 17, 4973-4991.	2.5	15
26	The formation of peak rings in large impact craters. Science, 2016, 354, 878-882.	12.6	181
27	Continental rifting and sediment infill in the northwestern Gulf of Mexico. Geology, 2015, 43, 631-634.	4.4	59
28	Aleutian basin oceanic crust. Earth and Planetary Science Letters, 2015, 426, 167-175.	4.4	9
29	Dynamic response to strike-slip tectonic control on the deposition and evolution of the Baranof Fan, Gulf of Alaska. , 2014, 10, 680-691.		10
30	Deep crustal structure of the northeastern Gulf of Mexico: Implications for rift evolution and seafloor spreading. Journal of Geophysical Research: Solid Earth, 2014, 119, 6802-6822.	3.4	72
31	Deep crustal structure in the eastern Gulf of Mexico. Journal of Geophysical Research: Solid Earth, 2014, 119, 6782-6801.	3.4	66
32	Subduction and accretion of sedimentary rocks in the Yakutat collision zone, St. Elias orogen, Gulf of Alaska. Earth and Planetary Science Letters, 2013, 381, 116-126.	4.4	16
33	Moho interface beneath Yakutat terrane, southern Alaska. Journal of Geophysical Research: Solid Earth, 2013, 118, 5084-5097.	3.4	24
34	Seismic images of the Transition fault and the unstable Yakutat–Pacific–North American triple junction. Geology, 2013, 41, 571-574.	4.4	38
35	The role of farfield tectonic stress in oceanic intraplate deformation, Gulf of Alaska. Journal of Geophysical Research: Solid Earth, 2013, 118, 1862-1872.	3.4	26
36	GEOPHYSICAL CHARACTERIZATION OF THE CHICXULUB IMPACT CRATER. Reviews of Geophysics, 2013, 51, 31-52.	23.0	100

GAIL CHRISTESON

#	Article	IF	CITATIONS
37	Crustal structure of the Yakutat terrane and the evolution of subduction and collision in southern Alaska. Journal of Geophysical Research, 2012, 117, .	3.3	121
38	Shallow oceanic crust: Full waveform tomographic images of the seismic layer 2A/2B boundary. Journal of Geophysical Research, 2012, 117, .	3.3	13
39	Full waveform tomographic images of the peak ring at the Chicxulub impact crater. Journal of Geophysical Research, 2011, 116, .	3.3	35
40	Late Cretaceousâ€Miocene diachronous onset of back thrusting along the South Caribbean deformed belt and its importance for understanding processes of arc collision and crustal growth. Tectonics, 2011, 30, .	2.8	46
41	Evolution of the Grenada and Tobago basins and implications for arc migration. Marine and Petroleum Geology, 2011, 28, 235-258.	3.3	60
42	Tectonic and climatic influence on the evolution of the Surveyor Fan and Channel system, Gulf of Alaska. , 2011, 7, 830-844.		51
43	Seismic images of Chicxulub impact melt sheet and comparison with the Sudbury structure. , 2010, , .		17
44	The Yakutat terrane: Dramatic change in crustal thickness across the Transition fault, Alaska. Geology, 2010, 38, 895-898.	4.4	129
45	Response—Cretaceous Extinctions. Science, 2010, 328, 975-976.	12.6	16
46	Mapping of seismic layer 2A/2B boundary above the sheeted dike unit at intermediate spreading crust exposed near the Blanco Transform. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	24
47	Future Scientific Drilling of Oceanic Crust. Eos, 2010, 91, 133.	0.1	1
48	The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary. Science, 2010, 327, 1214-1218.	12.6	1,140
49	Journal club. Nature, 2009, 459, 755-755.	27.8	Ο
50	Mantle deformation beneath the Chicxulub impact crater. Earth and Planetary Science Letters, 2009, 284, 249-257.	4.4	35
51	Threeâ€dimensional joint inversion of traveltime and gravity data across the Chicxulub impact crater. Journal of Geophysical Research, 2009, 114, .	3.3	17
52	Importance of pre-impact crustal structure for the asymmetry of the Chicxulub impactÂcrater. Nature Geoscience, 2008, 1, 131-135.	12.9	156
53	Crustal structure of the Caribbean–northeastern South America arc ontinent collision zone. Journal of Geophysical Research, 2008, 113, .	3.3	65
54	Dynamic modeling suggests terrace zone asymmetry in the Chicxulub crater is caused by target heterogeneity. Earth and Planetary Science Letters, 2008, 270, 221-230.	4.4	96

GAIL CHRISTESON

#	Article	IF	CITATIONS
55	Characterizing the Galicia Bank-Southern Iberia Abyssal Plain rifted margin segment boundary using multichannel seismic and ocean bottom seismometer data. Journal of Geophysical Research, 2007, 112, .	3.3	24
56	Inconsistent correlation of seismic layer 2a and lava layer thickness in oceanic crust. Nature, 2007, 445, 418-421.	27.8	78
57	Evolution of the Southern Caribbean Plate Boundary. Eos, 2006, 87, 97.	0.1	25
58	Chicxulub Crater Seismic Survey prepares way for future drilling. Eos, 2005, 86, 325.	0.1	11
59	Structure of the Lesser Antilles subduction zone backstop and its role in a large accretionary system. Journal of Geophysical Research, 2003, 108, .	3.3	34
60	Deep structure of an island arc backstop, Lesser Antilles subduction zone. Journal of Geophysical Research, 2003, 108, .	3.3	23
61	Deep crustal structure of Bransfield Strait: Initiation of a back arc basin by rift reactivation and propagation. Journal of Geophysical Research, 2003, 108, .	3.3	44
62	Backarc basin evolution and cordilleran orogenesis: Insights from new ocean-bottom seismograph refraction profiling in Bransfield Strait, Antarctica. Geology, 2003, 31, 107.	4.4	51
63	Comparison of Geologic and Seismic Structure of Uppermost Fast-Spreading Oceanic Crust: Insights From a Crustal Cross-Section at the Hess Deep Rift. , 2003, , 99-129.		9
64	Testing the resolution of a 3D velocity tomogram across the Chicxulub crater. Tectonophysics, 2002, 355, 215-226.	2.2	34
65	Structure of uppermost fast-spread oceanic crust exposed at the Hess Deep Rift: Implications for subaxial processes at the East Pacific Rise. Geochemistry, Geophysics, Geosystems, 2002, 3, n/a-n/a.	2.5	111
66	Deep crustal structure of the Chicxulub impact crater. Journal of Geophysical Research, 2001, 106, 21751-21769.	3.3	83
67	Seismic attenuation in the Costa Rica margin wedge: amplitude modeling of ocean bottom hydrophone data. Earth and Planetary Science Letters, 2000, 179, 391-405.	4.4	14
68	Peak-ring formation in large impact craters: geophysical constraints from Chicxulub. Earth and Planetary Science Letters, 2000, 183, 347-354.	4.4	113
69	Upper crustal structure of the Chicxulub impact crater from wide-angle ocean bottom seismograph data. , 1999, , .		15
70	Structure of the Costa Rica convergent margin, offshore Nicoya Peninsula. Journal of Geophysical Research, 1999, 104, 25443-25468.	3.3	77
71	Shear and compressional wave structure of the East Pacific Rise, 9°-10°N. Journal of Geophysical Research, 1997, 102, 7821-7835.	3.3	44
72	Size and morphology of the Chicxulub impact crater. Nature, 1997, 390, 472-476.	27.8	250

GAIL CHRISTESON

#	Article	IF	CITATIONS
73	Extrusive thickness variability at the East Pacific Rise, 9°-10°N: Constraints from seismic techniques. Journal of Geophysical Research, 1996, 101, 2859-2873.	3.3	67
74	Effect of shot interval on ocean bottom seismograph and hydrophone data. Geophysical Research Letters, 1996, 23, 3783-3786.	4.0	17
75	The shallow attenuation structure of the fast-spreading East Pacific Rise near 9°30′N. Geophysical Research Letters, 1994, 21, 321-324.	4.0	33
76	Seismic constraints on shallow crustal emplacement processes at the fast spreading East Pacific Rise. Journal of Geophysical Research, 1994, 99, 17957-17973.	3.3	118
77	Structure of the Northern Symmetrical Segment of the Juan de Fuca Ridge. Marine Geophysical Researches, 1993, 15, 219-240.	1.2	15
78	Structure of young upper crust at the East Pacific Rise near 9°30'N. Geophysical Research Letters, 1992, 19, 1045-1048.	4.0	108
79	Geophysical constraints on the shear stress along the Marquesas Fracture Zone. Journal of Geophysical Research, 1992, 97, 4425-4437.	3.3	14
80	Relationship between spreading rate and the seismic structure of mid-ocean ridges. Nature, 1992, 355, 815-817.	27.8	154