Chia-Hung Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/46682/publications.pdf

Version: 2024-02-01

66 papers 3,065 citations

31 h-index

147801

54 g-index

72 all docs 72 docs citations

72 times ranked 4835 citing authors

#	Article	IF	Citations
1	Rapid microfluidic platform for screening and enrichment of cells secreting virus neutralizing antibodies. Lab on A Chip, 2022, 22, 2578-2589.	6.0	4
2	Future foods: Design, fabrication and production through microfluidics. Biomaterials, 2022, 287, 121631.	11.4	10
3	Dissolvable Gelatinâ€Based Microcarriers Generated through Droplet Microfluidics for Expansion and Culture of Mesenchymal Stromal Cells. Biotechnology Journal, 2021, 16, e2000048.	3.5	22
4	High-throughput functional profiling of single adherent cells <i>via</i> hydrogel drop-screen. Lab on A Chip, 2021, 21, 764-774.	6.0	13
5	Multiplexed Single-Cell Leukocyte Enzymatic Secretion Profiling from Whole Blood Reveals Patient-Specific Immune Signature. Analytical Chemistry, 2021, 93, 4374-4382.	6.5	10
6	A flexible multiplexed immunosensor for point-of-care in situ wound monitoring. Science Advances, 2021, 7, .	10.3	106
7	Hybrid hydrogel reactor with metal–organic framework for biomimetic cascade catalysis. Chemical Engineering Journal, 2021, 425, 131482.	12.7	16
8	Microfluidic sample preparation for respiratory virus detection: A review. Biomicrofluidics, 2021, 15, 011503.	2.4	8
9	Heterogeneous multi-compartmental DNA hydrogel particles prepared via microfluidic assembly for lymphocyte-inspired precision medicine. Nanoscale, 2021, 13, 20531-20540.	5.6	3
10	Organic nanoparticle-doped microdroplets as dual-modality contrast agents for ultrasound microvascular flow and photoacoustic imaging. Scientific Reports, 2020, 10, 17009.	3.3	1
11	Functional Stem Cell Sorting via Integrative Droplet Synchronization. Analytical Chemistry, 2020, 92, 7915-7923.	6.5	8
12	The Role of Single-Cell Technology in the Study and Control of Infectious Diseases. Cells, 2020, 9, 1440.	4.1	15
13	Functional reservoir microcapsules generated <i>via</i> microfluidic fabrication for long-term cardiovascular therapeutics. Lab on A Chip, 2020, 20, 2756-2764.	6.0	26
14	Intelligent optofluidic analysis for ultrafast single bacterium profiling of cellulose production and morphology. Lab on A Chip, 2020, 20, 626-633.	6.0	7
15	Nanoplasmon-enhanced drop-screen for high throughput single-cell nucleocytoplasmic miRNA profiling. Lab on A Chip, 2020, 20, 1939-1946.	6.0	7
16	Microfluidic compartmentalization to identify gene biomarkers of infection. Biomicrofluidics, 2020, 14, 061502.	2.4	8
17	Single-cell assays using integrated continuous-flow microfluidics. Methods in Enzymology, 2019, 628, 59-94.	1.0	0
18	Plasmonic droplet screen for single-cell secretion analysis. Biosensors and Bioelectronics, 2019, 144, 111639.	10.1	22

#	Article	IF	Citations
19	Nanoâ€inâ€Micro Smart Hydrogel Composite for a Rapid Sensitive Immunoassay. Advanced Healthcare Materials, 2019, 8, e1801277.	7.6	15
20	Intelligent Biohybrid Robotic Systems: A Remotely Controlled Transformable Soft Robot Based on Engineered Cardiac Tissue Construct (Small 18/2019). Small, 2019, 15, 1970095.	10.0	0
21	Sub-Micro Particle Matter Detection for Metal 3-D Printing Workshop. IEEE Sensors Journal, 2019, 19, 4932-4939.	4.7	6
22	A Remotely Controlled Transformable Soft Robot Based on Engineered Cardiac Tissue Construct. Small, 2019, 15, e1900006.	10.0	27
23	Upconversion amplification through dielectric superlensing modulation. Nature Communications, 2019, 10, 1391.	12.8	114
24	Ultrafast Single-Cell Level Enzymatic Tumor Profiling. Analytical Chemistry, 2019, 91, 1277-1285.	6.5	18
25	Buffer-free integrative nanofluidic device for real-time continuous flow bioassays by ion concentration polarization. Lab on A Chip, 2018, 18, 574-584.	6.0	19
26	Smart Hydrogel Microfluidics for Singleâ€Cell Multiplexed Secretomic Analysis with High Sensitivity. Small, 2018, 14, e1802918.	10.0	52
27	Ultrahigh-throughput droplet microfluidic device for single-cell miRNA detection with isothermal amplification. Lab on A Chip, 2018, 18, 1914-1920.	6.0	58
28	Photothermal generation of programmable microbubble array on nanoporous gold disks. Optics Express, 2018, 26, 16893.	3.4	26
29	Nanofluidic terahertz metasensor for sensing in aqueous environment. Applied Physics Letters, 2018, 113, .	3.3	97
30	Single Upconversion Nanoparticle–Bacterium Cotrapping for Singleâ€Bacterium Labeling and Analysis. Small, 2017, 13, 1603418.	10.0	53
31	Singleâ€Bacterium Analysis: Single Upconversion Nanoparticle–Bacterium Cotrapping for Singleâ€Bacterium Labeling and Analysis (Small 14/2017). Small, 2017, 13, .	10.0	0
32	Fast-responsive hydrogel as an injectable pump for rapid on-demand fluidic flow control. Biomicrofluidics, 2017, 11, 034107.	2.4	5
33	Effective Light Directed Assembly of Building Blocks with Microscale Control. Small, 2017, 13, 1700684.	10.0	27
34	Tissue Engineering: Effective Light Directed Assembly of Building Blocks with Microscale Control (Small 24/2017). Small, 2017, 13, .	10.0	0
35	Heterogeneous multi-compartmental hydrogel particles as synthetic cells for incompatible tandem reactions. Nature Communications, 2017, 8, 663.	12.8	126
36	A Miniature On-Chip Methane Sensor Based on an Ultra-Low Loss Waveguide and a Micro-Ring Resonator Filter. Micromachines, 2017, 8, 160.	2.9	13

#	Article	IF	Citations
37	Asymmetrical Deterministic Lateral Displacement Gaps for Dual Functions of Enhanced Separation and Throughput of Red Blood Cells. Scientific Reports, 2016, 6, 22934.	3.3	87
38	Single Cell Analysis of Leukocyte Protease Activity Using Integrated Continuous-Flow Microfluidics. Analytical Chemistry, 2016, 88, 11750-11757.	6.5	25
39	Production of Hollow Bacterial Cellulose Microspheres Using Microfluidics to Form an Injectable Porous Scaffold for Wound Healing. Advanced Healthcare Materials, 2016, 5, 2983-2992.	7.6	57
40	Single cell multiplexed assay for proteolytic activity using droplet microfluidics. Biosensors and Bioelectronics, 2016, 81, 408-414.	10.1	66
41	A turn on fluorescent sensor based on lanthanide coordination polymer nanoparticles for the detection of mercury(<scp>ii</scp>) in biological fluids. RSC Advances, 2016, 6, 17811-17817.	3.6	45
42	Real-time modulated nanoparticle separation with an ultra-large dynamic range. Lab on A Chip, 2016, 16, 75-85.	6.0	75
43	Continuous-flow C. elegans fluorescence expression analysis with real-time image processing through microfluidics. Biosensors and Bioelectronics, 2016, 77, 428-434.	10.1	18
44	Photoresponsive microvalve for remote actuation and flow control in microfluidic devices. Biomicrofluidics, 2015, 9, 034114.	2.4	36
45	Gradient Porous Elastic Hydrogels with Shapeâ€Memory Property and Anisotropic Responses for Programmable Locomotion. Advanced Functional Materials, 2015, 25, 7272-7279.	14.9	228
46	Low-volume multiplexed proteolytic activity assay and inhibitor analysis through a pico-injector array. Lab on A Chip, 2015, 15, 1153-1159.	6.0	34
47	A one-step hydrothermal route to programmable stimuli-responsive hydrogels. Chemical Communications, 2015, 51, 6617-6620.	4.1	10
48	Remote modulation of neural activities via near-infrared triggered release of biomolecules. Biomaterials, 2015, 65, 76-85.	11.4	65
49	A convection-driven long-range linear gradient generator with dynamic control. Lab on A Chip, 2015, 15, 1445-1450.	6.0	32
50	Sustained release of hydrophobic drugs by the microfluidic assembly of multistage microgel/poly (lactic-co-glycolic acid) nanoparticle composites. Biomicrofluidics, 2015, 9, 052601.	2.4	35
51	Jetting microfluidics with size-sorting capability for single-cell protease detection. Biosensors and Bioelectronics, 2015, 66, 19-23.	10.1	81
52	Single cell kinase signaling assay using pinched flow coupled droplet microfluidics. Biomicrofluidics, 2014, 8, 034104.	2.4	34
53	Drug Delivery: Near-Infrared Light Responsive Multi-Compartmental Hydrogel Particles Synthesized Through Droplets Assembly Induced by Superhydrophobic Surface (Small 23/2014). Small, 2014, 10, 4984-4984.	10.0	2
54	Nearâ€Infrared Light Responsive Multiâ€Compartmental Hydrogel Particles Synthesized Through Droplets Assembly Induced by Superhydrophobic Surface. Small, 2014, 10, 4886-4894.	10.0	47

#	Article	IF	CITATIONS
55	Near-infrared light triggerable deformation-free polysaccharide double network hydrogels. Chemical Communications, 2014, 50, 7052-7055.	4.1	35
56	NeuroArray: A Universal Interface for Patterning and Interrogating Neural Circuitry with Single Cell Resolution. Scientific Reports, 2014, 4, 4784.	3.3	54
57	Near-infrared photothermal activation of microgels incorporating polypyrrole nanotransducers through droplet microfluidics. Chemical Communications, 2013, 49, 7887.	4.1	32
58	Multiplexed Protease Activity Assay for Low-Volume Clinical Samples Using Droplet-Based Microfluidics and Its Application to Endometriosis. Journal of the American Chemical Society, 2013, 135, 1645-1648.	13.7	76
59	Near-infrared photothermal activation of microgels incorporating polypyrrole nanotransducers through droplet microfluidics. , 2013, , .		0
60	ADAM-10 and -17 regulate endometriotic cell migration via concerted ligand and receptor shedding feedback on kinase signaling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2074-83.	7.1	80
61	Enhancing Protease Activity Assay in Droplet-Based Microfluidics Using a Biomolecule Concentrator. Journal of the American Chemical Society, 2011, 133, 10368-10371.	13.7	77
62	Monoglycerides in Oils., 2011,, 173-201.		6
63	Droplet Microfluidics for Fabrication of Nonâ€5pherical Particles. Macromolecular Rapid Communications, 2010, 31, 108-118.	3.9	208
64	Microfluidic Assembly of Magnetic Hydrogel Particles with Uniformly Anisotropic Structure. Advanced Materials, 2009, 21, 3201-3204.	21.0	196
65	Janus Particles Templated from Double Emulsion Droplets Generated Using Microfluidics. Langmuir, 2009, 25, 4320-4323.	3.5	210
66	Beating Poisson encapsulation statistics using close-packed ordering. Lab on A Chip, 2009, 9, 2628.	6.0	162