Guillaume Huguet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4667928/publications.pdf

Version: 2024-02-01

331670 377865 44 2,726 21 h-index citations papers

34 g-index 59 59 59 4635 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Deletion of Loss-of-Function–Intolerant Genes and Risk of 5 Psychiatric Disorders. JAMA Psychiatry, 2022, 79, 78.	11.0	8
2	Genes To Mental Health (G2MH): A Framework to Map the Combined Effects of Rare and Common Variants on Dimensions of Cognition and Psychopathology. American Journal of Psychiatry, 2022, 179, 189-203.	7.2	29
3	Copy Number Variant Risk Scores Associated With Cognition, Psychopathology, and Brain Structure in Youths in the Philadelphia Neurodevelopmental Cohort. JAMA Psychiatry, 2022, 79, 699.	11.0	8
4	Genome-wide association study reveals new insights into the heritability and genetic correlates of developmental dyslexia. Molecular Psychiatry, 2021, 26, 3004-3017.	7.9	56
5	Effect Sizes of Deletions and Duplications on Autism Risk Across the Genome. American Journal of Psychiatry, 2021, 178, 87-98.	7.2	50
6	Endocannabinoid Gene $\tilde{A}-$ Gene Interaction Association to Alcohol Use Disorder in Two Adolescent Cohorts. Frontiers in Psychiatry, 2021, 12, 645746.	2.6	4
7	Bayonet-shaped language development in autism with regression: a retrospective study. Molecular Autism, 2021, 12, 35.	4.9	12
8	Omnigenic Impact of Copy Number Variants on Cognition and Psychopathology in the Philadelphia Neurodevelopmental Cohort. Biological Psychiatry, 2021, 89, S320.	1.3	0
9	Assessing the Effects of Rare Copy Number Variants on Psychiatric Symptoms and Cognitive Ability in 1M Individuals. Biological Psychiatry, 2021, 89, S46.	1.3	O
10	The General Impact of Haploinsufficiency on Brain Connectivity Underlies the Pleiotropic Effect of Neuropsychiatric CNVS. Biological Psychiatry, 2021, 89, S40.	1.3	0
11	Effects of eight neuropsychiatric copy number variants on human brain structure. Translational Psychiatry, 2021, 11, 399.	4.8	18
12	Genome-wide analysis of gene dosage in 24,092 individuals estimates that 10,000 genes modulate cognitive ability. Molecular Psychiatry, 2021, 26, 2663-2676.	7.9	33
13	Mutations associated with neuropsychiatric conditions delineate functional brain connectivity dimensions contributing to autism and schizophrenia. Nature Communications, 2020, 11 , 5272.	12.8	35
14	Measuring and Estimating the Effect Size of Rare Non-Recurrent Deletions and Duplications on General Intelligence. Biological Psychiatry, 2020, 87, S196.	1.3	1
15	Estimating the effects of copyâ€number variants on intelligence using hierarchical Bayesian models. Genetic Epidemiology, 2020, 44, 825-840.	1.3	1
16	Functional Connectivity Analyses Suggest Shared Molecular Mechanisms Across 12 Neuropsychiatric Mutations, Autism and Schizophrenia. Biological Psychiatry, 2020, 87, S395.	1.3	2
17	General Principles of Gene Dosage Effects on Brain Structure. Biological Psychiatry, 2020, 87, S177.	1.3	0
18	Cannabinoids and psychotic symptoms: A potential role for a genetic variant in the P2X purinoceptor 7 (P2RX7) gene. Brain, Behavior, and Immunity, 2020, 88, 573-581.	4.1	14

#	Article	IF	CITATIONS
19	QUANTIFYING THE EFFECT OF COPY-NUMBER VARIANTS ON GENERAL INTELLIGENCE IN UNSELECTED POPULATIONS. European Neuropsychopharmacology, 2019, 29, S848.	0.7	0
20	5 DIFFERENCES IN THE GENETIC BACKGROUND CONTRIBUTE TO RISK AND RESILIENCE TO AUTISM. European Neuropsychopharmacology, 2019, 29, S61.	0.7	0
21	40 MAPPING THE EFFECT-SIZE OF GENE DOSAGE ON GENERAL INTELLIGENCE ACROSS THE GENOME. European Neuropsychopharmacology, 2019, 29, S81.	0.7	0
22	Both rare and common genetic variants contribute to autism in the Faroe Islands. Npj Genomic Medicine, 2019, 4, 1.	3.8	72
23	Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia. Translational Psychiatry, 2019, 9, 77.	4.8	82
24	251. Measuring and Estimating the Effects of Rare Variants, Genome-Wide, on Cognition. Biological Psychiatry, 2019, 85, S104.	1.3	0
25	Measuring and Estimating the Effect Sizes of Copy Number Variants on General Intelligence in Community-Based Samples. JAMA Psychiatry, 2018, 75, 447.	11.0	77
26	Disruption of melatonin synthesis is associated with impaired 14-3-3 and miR-451 levels in patients with autism spectrum disorders. Scientific Reports, 2017, 7, 2096.	3.3	83
27	Anatomy and Cell Biology of Autism Spectrum Disorder: Lessons from Human Genetics. Advances in Anatomy, Embryology and Cell Biology, 2017, 224, 1-25.	1.6	10
28	Zinc deficiency and low enterocyte zinc transporter expression in human patients with autism related mutations in SHANK3. Scientific Reports, 2017, 7, 45190.	3.3	56
29	6.44 The Association Between Endocannabinoid Genes and Alcohol Abuse in Teens. Journal of the American Academy of Child and Adolescent Psychiatry, 2017, 56, S291.	0.5	0
30	Heritability of the melatonin synthesis variability in autism spectrum disorders. Scientific Reports, 2017, 7, 17746.	3.3	28
31	Genetic Causes of Autism Spectrum Disorders. , 2016, , 13-24.		6
32	The Genetics of Autism Spectrum Disorders. Research and Perspectives in Endocrine Interactions, 2016, , 101-129.	0.2	47
33	A de novo microdeletion of SEMA5A in a boy with autism spectrum disorder and intellectual disability. European Journal of Human Genetics, 2016, 24, 838-843.	2.8	40
34	11q24.2â€25 microâ€rearrangements in autism spectrum disorders: Relation to brain structures. American Journal of Medical Genetics, Part A, 2015, 167, 3019-3030.	1.2	25
35	Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A Gradient of Severity in Cognitive Impairments. PLoS Genetics, 2014, 10, e1004580.	3.5	501
36	The emerging role of <i>SHANK</i> genes in neuropsychiatric disorders. Developmental Neurobiology, 2014, 74, 113-122.	3.0	224

3

#	Article	IF	CITATIONS
37	Common variants in genes of the postsynaptic FMRP signalling pathway are risk factors for autism spectrum disorders. Human Genetics, 2014, 133, 781-792.	3.8	59
38	Heterogeneous Pattern of Selective Pressure for PRRT2 in Human Populations, but No Association with Autism Spectrum Disorders. PLoS ONE, 2014, 9, e88600.	2.5	14
39	Crystal structure and functional mapping of human ASMT, the last enzyme of the melatonin synthesis pathway. Journal of Pineal Research, 2013, 54, 46-57.	7.4	51
40	The Genetic Landscapes of Autism Spectrum Disorders. Annual Review of Genomics and Human Genetics, 2013, 14, 191-213.	6.2	352
41	Heterozygous FA2H mutations in autism spectrum disorders. BMC Medical Genetics, 2013, 14, 124.	2.1	7
42	Genetic and Functional Analyses of SHANK2 Mutations Suggest a Multiple Hit Model of Autism Spectrum Disorders. PLoS Genetics, 2012, 8, e1002521.	3.5	358
43	SHANK1 Deletions in Males with Autism Spectrum Disorder. American Journal of Human Genetics, 2012, 90, 879-887.	6.2	292
44	Genetic variations of the melatonin pathway in patients with attention-deficit and hyperactivity disorders. Journal of Pineal Research, 2011, 51, 394-399.	7.4	52