## Jungho Ryu

## List of Publications by Year in descending order

[^0]

Effect of aspect ratio of piezoelectric constituents on the energy harvesting performance of
magneto-mechano-electric generators. Energy, 2022, 239, 122078 .

Modulation of magnetoelectric coupling through systematically engineered spin canting in nickelâ€"zinc ferrite. Journal of the American Ceramic Society, 2022, 105, 2655-2662.
3.8

Exceeding 50ÂmW RMSâ€Output Magnetoâ€Mechanoâ€Electric Generator by Hybridizing Piezoelectric and Electromagnetic Induction Effects. Advanced Functional Materials, 2022, 32, .

Boosting the performance of magneto-mechano-electric energy generator using magnetic lens.
Sensors and Actuators A: Physical, 2022, 338, 113451.

Study of magnetoelectric coupling in magnetoelectric laminates fabricated using 15-mode PMN-PZT
single crystals. Journal of the Korean Ceramic Society, 2022, 59, 322-328.

Effect of cooling rates on mechanical properties of alumina-toughened zirconia composites. Ceramics
International, 2022, 48, 21048-21053.

First principle understanding of antiferroelectric ordering in La-doped silver niobate. Physica B:
$7 \quad$ Condensed Matter, 2022, 640, 414040.

Stable output performance generated from a magneto-mechano-electric generator having
self-resonance tunability with a movable proof mass. Nano Energy, 2022, 101, 107607.
16.0

13

Boosting the lifespan of magneto-mechano-electric generator via vertical installation for sustainable
9 powering of Internet of Things sensor. Nano Energy, 2022, 101, 107567.
Enhanced pyroelectric response from domain-engineered lead-free
10 (KO.5BiO.5TiO3-BaTiO3)-NaO.5BiO.5TiO3 ferroelectric ceramics. Journal of the European Ceramic Society,
5.7

2021, 41, 2524-2532.

11 Harvesting stray magnetic field for powering wireless sensors. , 2021, , 249-278.
1

12 Lead-based and lead-free ferroelectric ceramic capacitors for electrical energy storage. , 2021, , 279-356.

Increased Energy-Storage Density and Superior Electric Field and Thermally Stable Energy Efficiency of
13 Aerosol-Deposited Relaxor (Pb0.89La0.11)(ZrO.70TiO.30)O3 Films. Journal of Thermal Spray Technology,
$3.1 \quad 16$
2021, 30, 591-602.
Multiscale surface modified magneto-mechano-triboelectric nanogenerator enabled by eco-friendly
NaCl imprinting stamp for self-powered loT applications. Nanoscale, 2021, 13, 8418-8424.
5.6

21

Redox-active electrolyte-based MnWO4/|AC asymmetric supercapacitors. Journal of Materials Science: Materials in Electronics, 2021, 32, 8054-8063.

Thermal treatment effect on the magnetoelectric properties of ( $\mathrm{Ni0.5Zn0.5} \mathrm{)} \mathrm{Fe2O4/Pt/Pb(ZrO0.3TiO.7)O310}$ heterostructured thin films. Ceramics International, 2021, 47, 6371-6375.

| 19 | Enhanced Energy Storage Performance of Polymer/Ceramic/Metal Composites by Increase of Thermal Conductivity and Coulomb-Blockade Effect. ACS Applied Materials \& Interfaces, 2021, 13, 27343-27352. | 8.0 | 26 |
| :---: | :---: | :---: | :---: |
| 20 | Roomâ€temperature multiferroicity in NiFe <sub> 2 </sub> O <sub>4</sub> and its magnetoelectric coupling intensified through defect engineering. Journal of the American Ceramic Society, 2021, 104, 6384-6392. | 3.8 | 11 |
| 21 | High performance of polycrystalline piezoelectric ceramic-based magneto-mechano-electric energy generators. Journal of Asian Ceramic Societies, 2021, 9, 1290-1297. | 2.3 | 8 |
| 22 | Photocatalytic activities of hydrothermal synthesized copper zinc tin sulfide nanostructures. Journal of Materials Science: Materials in Electronics, 2021, 32, 22803-22812. | 2.2 | 3 |
| 23 | Enhanced magnetoelectric coupling in stretch-induced shear mode magnetoelectric composites. Journal of the Korean Ceramic Society, 2021, 58, 700-705. | 2.3 | 2 |
| 24 | Induced slim ferroelectric hysteresis loops and enhanced energy-storage properties of Mn -doped (Pb0Â.93La0.07)(ZrOÂ•82Ti0.18)O3 anti-ferroelectric thick films by aerosol deposition. Ceramics International, 2021, 47, 31590-31596. | 4.8 | 12 |
| 25 | Artificially induced normal ferroelectric behaviour in aerosol deposited relaxor 65PMNâ€"35PT thick films by interface engineering. Journal of Materials Chemistry C, 2021, 9, 3403-3411. | 5.5 | 11 |
| 26 | Enhancement of pyroelectricity in Mn-doped (011) 71Pb(Mg1/3Nb2/3)O3â€"6PbZrO3â€" 23 PbTiO 3 single crystals. Applied Physics Letters, 2021, 119, . | 3.3 | 8 |
| 27 | Ultra-magnetic field sensitive magnetoelectric composite with sub-pT detection limit at low frequency enabled by flash photon annealing. Nano Energy, 2021, 90, 106598. | 16.0 | 13 |

Photonic Drying/Annealing: Effect of Oven/Visible Light/Infrared Light/Flash-Lamp Drying/Annealing on
28 WO <sub> 3 </sub> for Electrochromic Smart Windows. ACS Sustainable Chemistry and Engineering,
$\begin{array}{ll}6.7 & 7\end{array}$
2021, 9, 14559-14568.

29 Recent Reports of Magneto-Mechano-Electric Conversion Composites. Ceramist, 2021, 24, 248-259.
$0.1 \quad 0$

30 Recent Progress in Devices Based on Magnetoelectric Composite Thin Films. Sensors, 2021, 21, 8012.
3.8

18

Enhancement of energy storage and thermal stability of relaxor
31 Pb0.92LaO.08Zr0.52TiO.48O3-Bi(Zn0.66Nb0.33)O3 thick films through aerosol deposition. Journal of the
European Ceramic Society, 2020, 40, 63-70.

32 Evidence of monoclinic phase and its variation with temperature at morphotropic phase boundary of
5.5

18
PLZT ceramics. Journal of Alloys and Compounds, 2020, 816, 152613.

- 18

33 Enhanced Mechanical Quality Factor of 32 Mode Mn Doped 71Pb(Mg1/3Nb2/3)O3ấ" 29 PbZrTiO 3
2.2

15
Piezoelectric Single Crystals. Electronic Materials Letters, 2020, 16, 156-163.

Piezoelectric Thick Film Deposition via Powder/Granule Spray in Vacuum: A Review. Actuators, 2020, 9,
59.
2.3

19

| 39 | Large Power Amplification in Magnetoâ€Mechanoâ€Electric Harvesters through Distributed Forcing. Advanced Energy Materials, 2020, 10, 1903689. | 19.5 | 50 |
| :---: | :---: | :---: | :---: |
| 40 | A Magneto-Mechano-Electric Generator Based on Lead-Free Single-Crystal Fibers for Robust Scavenging of Ambient Magnetic Energy. Electronic Materials Letters, 2020, 16, 369-375. | 2.2 | 18 |
| 41 | Enhancement of magnetoelectric (ME) coupling by using textured magnetostrictive alloy in 2-2 type ME laminate. Journal of Alloys and Compounds, 2020, 834, 155124. | 5.5 | 18 |
| 42 | Composition dependent ferro-piezo hysteresis loops and energy density properties of mechanically activated (Pblâ’xLax)(Zr0.60TiO.40)O3 ceramics. Applied Physics A: Materials Science and Processing, 2020, 126, 1. | 2.3 | 24 |
| 43 | Sensing of ultra-low magnetic field by magnetoelectric (ME) composites. Ceramist, 2020, 23, 38-53. | 0.1 | 2 |

A high output magneto-mechano-triboelectric generator enabled by accelerated water-soluble 45 nano-bullets for powering a wireless indoor positioning system. Energy and Environmental Science,

$$
\begin{aligned}
& \text { A Comparison Study of Fatigue Behavior of Hard and Soft Piezoelectric Single Crystal Macro-Fiber } \\
& \text { Composites for Vibration Energy Harvesting. Sensors, 2019, 19, } 2196 .
\end{aligned}
$$

Prospects and challenges of the electrocaloric phenomenon in ferroelectric ceramics. Journal of Materials Chemistry C, 2019, 7, 6836-6859. 485.558
High Energy Storage Properties and Electrical Field Stability of Energy Efficiency of
49 (Pb0.89La0.11)(ZrO.70Ti0.30)0.9725O3 Relaxor Ferroelectric Ceramics. Electronic Materials Letters, 2019,2.2
3.835
15, 323-330.
Effect of Thickness Ratio in Piezoelectric/Elastic Cantilever Structure on the Piezoelectric Energy
Systems, 2019, 4, 3-39.Improvement of Energy Storage Characteristics of (Ba0.7Ca0.3)TiO3 Thick Films by the Increase of
55
56
57

Dielectric, Ferroelectric, Energy Storage, and Pyroelectric Properties of Mn-Doped
55 (Pb0.93La0.07)(ZrO.82TiO.18)O3 Anti-Ferroelectric Ceramics. Journal of the Korean Ceramic Society,
2.3

19 2019, 56, 412-420.

Dual-stimulus magnetoelectric energy harvesting. MRS Bulletin, 2018, 43, 199-205.
3.5

47

> Exceeding milli-watt powering magneto-mechano-electric generator for standalone-powered electronics. Energy and Environmental Science, 2018, 11, 818-829.
$30.8 \quad 110$

Laser Irradiation of Metal Oxide Films and Nanostructures: Applications and Advances. Advanced Materials, 2018, 30, el705148.
$21.0 \quad 170$

Piezoelectric Performance of Cubicâ€Phase BaTiO<sub>3</sub> Nanoparticles Vertically Aligned via
Electric Field. Advanced Sustainable Systems, 2018, 2, 1700133.
5.3

Enhanced Self-Biased Magnetoelectric Coupling in Laser-Annealed $\mathrm{Pb}(\mathrm{Zr}, \mathrm{Ti}) \mathrm{O}$ <sub> 3 </sub> Thick Film
Deposited on Ni Foil. ACS Applied Materials \& Interfaces, 2018, 10, 11018-11025.
8.0

34
61 A thickness-mode piezoelectric micromachined ultrasound transducer annular array using a PMNâ€"PZT
single crystal. Journal of Micromechanics and Microengineering, 2018, 28, 075015.
2.6

High Power Magnetic Field Energy Harvesting through Amplified Magnetoâ€Mechanical Vibration.
Advanced Energy Materials, 2018, 8, 1703313.
19.5

79
Roomâ€Temperature Solidâ€State Grown WO 3â^र̂' Film on Plastic Substrate for Extremely Sens
NO 2 Gas Sensors. Advanced Materials Interfaces, 2018, 5, 1700811.
64 Effect of elastic modulus of cantilever beam on the performance of unimorph type piezoelectric
energy harvester. APL Materials, 2018, 6.
3.720
Nano-size grains and high density of 65PMN-35PT thick film for high energy storage capacitor.
Ceramics International, 2018, 44, 20111-20114.

Enhancement of Magnetoelectric Conversion Achieved by Optimization of Interfacial Adhesion Layer in Laminate Composites. ACS Applied Materials \& Interfaces, 2018, 10, 32323-32330.
8.0

37

Highly tunable magnetoelectric response in dimensional gradient laminate composites of $\mathrm{Fe}-\mathrm{Ca}$ alloy
5.5

23
$67 \begin{aligned} & \text { Highly tunable magnetoelectric response in dimensional gradient laminate composites of Fe-Ga alloy } \\ & \text { and } \mathrm{Pb}(\mathrm{Mg} 1 / 3 \mathrm{Nb} 2 / 3) \mathrm{O} 3-\mathrm{Pb}(\mathrm{Zr}, \mathrm{Ti}) \mathrm{O} 3 \text { single crystal. Journal of Alloys and Compounds, 2018, 765, 764-770. }\end{aligned}$
Boosting the Recoverable Energy Density of Lead-Free Ferroelectric Ceramic Thick Films through
68 Artificially Induced Quasi-Relaxor Behavior. ACS Applied Materials \& Interfaces, 2018, 10,
8.0

64
20720-20727.

> Lead-free piezoelectric materials and composites for high power density energy harvesting. Journal of
> Materials Research, 2018, 33, 2235-2263.
2.6

Energy storage characteristics of $\{001\}$ oriented $\mathrm{Pb}(\mathrm{ZrO} .52 \mathrm{TiO} .48) \mathrm{O} 3$ thin film grown by chemical
1.8

15
solution deposition. Thin Solid Films, 2018, 660, 434-438.

Highâ€Performance Dielectric Ceramic Films for Energy Storage Capacitors: Progress and Outlook.
14.9

613
71 Advanced Functional Materials, 2018, 28, 1803665.

Broadband dual phase energy harvester: Vibration and magnetic field. Applied Energy, 2018, 225,
1132-1142.

Strong and anisotropic magnetoelectricity in composites of magnetostrictive Ni and solid-state
74 grown lead-free piezoelectric BZTâ€"BCT single crystals. Journal of Asian Ceramic Societies, 2017, 5,

```
83 Energy storage properties of Dy3+ doped Sr0.5Ba0.5Nb2O6 thick film with nano-size grains. Metals and
    Materials International, 2017, 23, 1045-1049.
```

Theoretical prediction of resonant and off-resonant magnetoelectric coupling in layered composites
Enhanced magnetic energy harvesting properties of magneto-mechano-electric generator by tailored
geometry. Applied Physics Letters, 2016,109, .

3 Lowâ€zoss Piezoelectric Singleâ€Crystal Fibers for Enhanced Magnetic Energy Harvesting with
Applications of Multiferroic Magnetoelectric Composites. Series in Materials Science and

Engineering, 2016, 215-254. $\quad$\begin{tabular}{l}
Enhanced off-resonance magnetoelectric response in laser annealed PZT thick film grown on <br>
magnetostrictive amorphous metal substrate. Applied Physics Letters, 2015, 107, .

$\quad$

Self-powered deep brain stimulation via a flexible PIMNT energy harvester. Energy and Environmental
\end{tabular}

100 A Hyperâ€Stretchable Elasticâ€Composite Energy Harvester. Advanced Materials, 2015, 27, 2866-2875.
109

Multiple broadband magnetoelectric response in thickness-controlled $\mathrm{Ni} /[011]$
$\mathrm{Pb}(\mathrm{Mg} 1 / 3 \mathrm{Nb} 2 / 3) \mathrm{O} 3-\mathrm{Pb}(\mathrm{Zr}, \mathrm{Ti}) \mathrm{O} 3$ single crystal/Ni laminates. Applied Physics Letters, 2013, 103, .

Colossal magnetoelectric response of PZT thick films on Ni substrates with a conductive
LaNiO<sub>3</sub> electrode. Journal Physics D: Applied Physics, 2013, 46, 092002.
2.8

Magnetoelectric properties and magnetomechanical energy harvesting from stray vibration and
111 electromagnetic wave by $\mathrm{Pb}(\mathrm{Mg} 1 / 3 \mathrm{Nb} 2 / 3) \mathrm{O} 3-\mathrm{Pb}(\mathrm{Zr}, \mathrm{Ti}) \mathrm{O} 3$ single crystal/Ni cantilever. Journal of Applied
2.5

Physics, 2013, 113, .

Enhancement of resonant and non-resonant magnetoelectric coupling in multiferroic laminates with anisotropic piezoelectric properties. Applied Physics Letters, 2013, 102, .

Effect of fluorine addition on the biological performance of hydroxyapatite coatings on Ti by aerosol deposition. Journal of Biomaterials Applications, 2013, 27, 587-594.
$2.4 \quad 27$

Fabrication and Characterization of Hybrid NTC Thermistor Films with Conducting Oxide Particles by an Aerosol-Deposition Process. Journal of the Korean Ceramic Society, 2013, 50, 63-69.
2.3

0
LaNiO3 conducting particle dispersed NiMn2O4 nanocomposite NTC thermistor thick films by aerosol deposition. Journal of Alloys and Compounds, 2012, 534, 70-73.
5.5

31
117 2â€2 Structured Magnetoelectric Composites by Aerosol Deposition. Journal of the American Ceramic Society, 2012, 95, 855-858.Journal of the American Ceramic Society, 2012, 95, 1489-1492.
119 Effect of electrode and substrate on the fatigue behavior of PZT thick films fabricated by aerosol deposition. Ceramics International, 2012, 38, S241-S244.
4.8 ..... 16
Composition Design Rule for High Piezoelectric Voltage Coefficient in
$120(\mathrm{~K}<$ sub> $0.5</$ sub> $\mathrm{Na}<$ sub $>0.5<\mid$ sub $>) \mathrm{NbO}<$ sub> $3</$ sub $>$ Based Pb-Free Ceramics. Japanese Journal of1.5

Multiferroic BiFeO3 thick film fabrication by aerosol deposition. Metals and Materials International,
$2010,16,639-642$.

Porous Photocatalytic $\mathrm{TiO}<\mathrm{sub}>2</ \mathrm{sub}>$ Thin Films by Aerosol Deposition. Journal of the American Ceramic Society, 2010, 93, 55-58.

Giant Magnetoelectric Coefficient in 3â€" 2 Nanocomposite Thick Films. Japanese Journal of Applied Physics, 2009, 48, 080204.

Enhanced domain contribution to ferroelectric properties in freestanding thick films. Journal of Applied Physics, 2009, 106, .

Preparation and characterization of piezoelectric ceramicâ $€^{\prime \prime}$ polymer composite thick films by aerosol deposition for sensor application. Sensors and Actuators A: Physical, 2009, 153, 89-95.

Flexible Dielectric $\mathrm{Bi}<$ sub>1.5</sub> $\mathrm{Zn}<\mathrm{sub}>1.0</ \mathrm{sub}>\mathrm{Nb}<$ sub>1.5</sub>O<sub>7</sub> Thin Films on a Cuâ€Polyimide Foil. Journal of the American Ceramic Society, 2009, 92, 524-527.
3.8

Highly Dense and Nanograined NiMn<sub>2<|sub>O<sub>4<|sub> Negative Temperature coefficient
133 Thermistor Thick Films Fabricated by Aerosolâ€Deposition. Journal of the American Ceramic Society, 2009, 92, 3084-3087.

Photocatalytic nanocomposite thin films of $\mathrm{TiO} 2-\mathrm{I}^{2}$-calcium phosphate by aerosol-deposition. Catalysis
Communications, 2009, 10, 596-599.

Piezoelectric and Magnetoelectric Thick Films for Fabricating Power Sources in Wireless Sensor
Nodes. Sensors, 2009, 9, 6362-6384.

Photocatalytic TiO2 thin films by aerosol-deposition: From micron-sized particles to nano-grained thin film at room temperature. Applied Catalysis B: Environmental, 2008, 83, 1-7.

137 High Dielectric Properties of $\mathrm{Bi}<$ sub $>1.5$ </sub $>\mathrm{Zn}<$ sub $>1.0</$ sub $>\mathrm{Nb}<$ sub $>1.5</$ sub> $\mathrm{O}<$ sub $>7</$ sub $>$ Thin
Films Fabricated at Room Temperature. Journal of the American Ceramic Society, 2008, 91, 3399-3401.
Effects of $\mathrm{Zr} / \mathrm{Ti}$ ratio and post-annealing temperature on the electrical properties of lead zirconate
138 titanate (PZT) thick films fabricated by aerosol deposition. Journal of Materials Research, 2008, 23, 226-235.

139 Fabrication of Lead Zirconate Titanate Thick Films Using a Powder Containing Organic Residue. Japanese Journal of Applied Physics, 2008, 47, 5545.

Ferroelectric and piezoelectric properties of $0.948(\mathrm{KO} .5 \mathrm{NaO} .5) \mathrm{NbO} 3 \mathrm{â} €^{\prime \prime} 0.052 \mathrm{LiSbO} 3$ lead-free piezoelectric thick film by aerosol deposition. Applied Physics Letters, 2008, 92, .

Fabrication and ferroelectric properties of highly dense lead-free piezoelectric ( K 0.5 NaO .5 ) NbO 3 thick
films by aerosol deposition. Applied Physics Letters, 2007, 90, 152901.

Sintering and piezoelectric properties of KNN ceramics doped with KZT. IEEE Transactions on
Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 2510-2515.

Preparation of Highly Dense PZNâ€"PZT Thick Films by the Aerosol Deposition Method Using Excess-PbO
Powder. Journal of the American Ceramic Society, 2007, 90, 3389-3394.

Induction of combinatory characteristics by relaxor modification of $\mathrm{Pb}(\mathrm{ZrO} .5 \mathrm{TiO} .5) \mathrm{O} 3$. Applied Physics
Letters, 2003, 83, 5020-5022.

Magnetoelectric Effect in Composites of Magnetostrictive and Piezoelectric Materials. , 2002, 8, 107-119.

Flexible Self-Charging, Ultrafast, High-Power-Density Ceramic Capacitor System. ACS Energy Letters, 0,


[^0]:    Source: https://exaly.com/author-pdf/4667918/publications.pdf
    Version: 2024-02-01

