
Jungho Ryu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4667918/publications.pdf Version: 2024-02-01

Ιυναμο Ργιι

#	Article	IF	CITATIONS
1	Highlyâ€Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates. Advanced Materials, 2014, 26, 2514-2520.	21.0	690
2	Magnetoelectric Effect in Composites of Magnetostrictive and Piezoelectric Materials. , 2002, 8, 107-119.		628
3	Highâ€Performance Dielectric Ceramic Films for Energy Storage Capacitors: Progress and Outlook. Advanced Functional Materials, 2018, 28, 1803665.	14.9	613
4	Magnetoelectric Properties in Piezoelectric and Magnetostrictive Laminate Composites. Japanese Journal of Applied Physics, 2001, 40, 4948-4951.	1.5	596
5	Status and Perspectives of Multiferroic Magnetoelectric Composite Materials and Applications. Actuators, 2016, 5, 9.	2.3	372
6	A Hyper‧tretchable Elastic omposite Energy Harvester. Advanced Materials, 2015, 27, 2866-2875.	21.0	350
7	Title is missing!. , 2001, 7, 17-24.		300
8	A Review on Piezoelectric Energy Harvesting: Materials, Methods, and Circuits. Energy Harvesting and Systems, 2019, 4, 3-39.	2.7	288
9	Effect of the Magnetostrictive Layer on Magnetoelectric Properties in Lead Zirconate Titanate/Terfenolâ€Ð Laminate Composites. Journal of the American Ceramic Society, 2001, 84, 2905-2908.	3.8	265
10	Self-powered deep brain stimulation via a flexible PIMNT energy harvester. Energy and Environmental Science, 2015, 8, 2677-2684.	30.8	207
11	Review of piezoelectric micromachined ultrasonic transducers and their applications. Journal of Micromechanics and Microengineering, 2017, 27, 113001.	2.6	186
12	Selfâ€Powered Wireless Sensor Node Enabled by an Aerosolâ€Deposited PZT Flexible Energy Harvester. Advanced Energy Materials, 2016, 6, 1600237.	19.5	179
13	Ubiquitous magneto-mechano-electric generator. Energy and Environmental Science, 2015, 8, 2402-2408.	30.8	177
14	Laser Irradiation of Metal Oxide Films and Nanostructures: Applications and Advances. Advanced Materials, 2018, 30, e1705148.	21.0	170
15	Fabrication and ferroelectric properties of highly dense lead-free piezoelectric (K0.5Na0.5)NbO3 thick films by aerosol deposition. Applied Physics Letters, 2007, 90, 152901.	3.3	138
16	Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film. APL Materials, 2017, 5, .	5.1	121
17	Magnetic energy harvesting with magnetoelectrics: an emerging technology for self-powered autonomous systems. Sustainable Energy and Fuels, 2017, 1, 2039-2052.	4.9	115
18	Exceeding milli-watt powering magneto-mechano-electric generator for standalone-powered electronics. Energy and Environmental Science, 2018, 11, 818-829.	30.8	110

#	Article	IF	CITATIONS
19	Lowâ€Loss Piezoelectric Singleâ€Crystal Fibers for Enhanced Magnetic Energy Harvesting with Magnetoelectric Composite. Advanced Energy Materials, 2016, 6, 1601244.	19.5	100
20	A high output magneto-mechano-triboelectric generator enabled by accelerated water-soluble nano-bullets for powering a wireless indoor positioning system. Energy and Environmental Science, 2019, 12, 666-674.	30.8	89
21	Flexible highly-effective energy harvester via crystallographic and computational control of nanointerfacial morphotropic piezoelectric thin film. Nano Research, 2017, 10, 437-455.	10.4	86
22	Pyroelectric Energy Conversion and Its Applications—Flexible Energy Harvesters and Sensors. Sensors, 2019, 19, 2170.	3.8	86
23	Piezoelectric and Magnetoelectric Thick Films for Fabricating Power Sources in Wireless Sensor Nodes. Sensors, 2009, 9, 6362-6384.	3.8	83
24	Photocatalytic TiO2 thin films by aerosol-deposition: From micron-sized particles to nano-grained thin film at room temperature. Applied Catalysis B: Environmental, 2008, 83, 1-7.	20.2	82
25	Ferroelectric and piezoelectric properties of 0.948(K0.5Na0.5)NbO3–0.052LiSbO3 lead-free piezoelectric thick film by aerosol deposition. Applied Physics Letters, 2008, 92, .	3.3	82
26	High Power Magnetic Field Energy Harvesting through Amplified Magnetoâ€Mechanical Vibration. Advanced Energy Materials, 2018, 8, 1703313.	19.5	79
27	Broadband dual phase energy harvester: Vibration and magnetic field. Applied Energy, 2018, 225, 1132-1142.	10.1	71
28	Stress-controlled Pb(Zr0.52Ti0.48)O3 thick films by thermal expansion mismatch between substrate and Pb(Zr0.52Ti0.48)O3 film. Journal of Applied Physics, 2011, 110, .	2.5	70
29	Linear and Nonlinear Dielectric Ceramics for High-Power Energy Storage Capacitor Applications. Journal of the Korean Ceramic Society, 2019, 56, 1-23.	2.3	70
30	Current Status of Magnetoelectric Composite Thin/Thick Films. Advances in Condensed Matter Physics, 2012, 2012, 1-15.	1.1	68
31	Boosting the Recoverable Energy Density of Lead-Free Ferroelectric Ceramic Thick Films through Artificially Induced Quasi-Relaxor Behavior. ACS Applied Materials & Interfaces, 2018, 10, 20720-20727.	8.0	64
32	Highly Dense and Nanograined NiMn ₂ O ₄ Negative Temperature coefficient Thermistor Thick Films Fabricated by Aerosolâ€Deposition. Journal of the American Ceramic Society, 2009, 92, 3084-3087.	3.8	60
33	Anisotropic self-biased dual-phase low frequency magneto-mechano-electric energy harvesters with giant power densities. APL Materials, 2014, 2, .	5.1	59
34	Multiple broadband magnetoelectric response in thickness-controlled Ni/[011] Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3 single crystal/Ni laminates. Applied Physics Letters, 2013, 103, .	3.3	58
35	Prospects and challenges of the electrocaloric phenomenon in ferroelectric ceramics. Journal of Materials Chemistry C, 2019, 7, 6836-6859.	5.5	58
36	Preparation and characterization of piezoelectric ceramic–polymer composite thick films by aerosol deposition for sensor application. Sensors and Actuators A: Physical, 2009, 153, 89-95.	4.1	57

#	Article	IF	CITATIONS
37	Lead-free piezoelectric materials and composites for high power density energy harvesting. Journal of Materials Research, 2018, 33, 2235-2263.	2.6	55
38	Optogenetic brain neuromodulation by stray magnetic field via flash-enhanced magneto-mechano-triboelectric nanogenerator. Nano Energy, 2020, 75, 104951.	16.0	54
39	Magnetoelectric properties and magnetomechanical energy harvesting from stray vibration and electromagnetic wave by Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3 single crystal/Ni cantilever. Journal of Applied Physics, 2013, 113, .	2.5	53
40	A pT/â^šHz sensitivity ac magnetic field sensor based on magnetoelectric composites using low-loss piezoelectric single crystals. Sensors and Actuators A: Physical, 2017, 260, 206-211.	4.1	52
41	Unleashing the Full Potential of Magnetoelectric Coupling in Film Heterostructures. Advanced Materials, 2017, 29, 1605688.	21.0	50
42	Large Power Amplification in Magnetoâ€Mechanoâ€Electric Harvesters through Distributed Forcing. Advanced Energy Materials, 2020, 10, 1903689.	19.5	50
43	In-plane impedance spectroscopy in aerosol deposited NiMn2O4 negative temperature coefficient thermistor films. Journal of Applied Physics, 2011, 109, 113722.	2.5	48
44	Significant power enhancement of magneto-mechano-electric generators by magnetic flux concentration. Energy and Environmental Science, 2020, 13, 4238-4248.	30.8	48
45	Dual-stimulus magnetoelectric energy harvesting. MRS Bulletin, 2018, 43, 199-205.	3.5	47
46	High Energy Storage Properties and Electrical Field Stability of Energy Efficiency of (Pb0.89La0.11)(Zr0.70Ti0.30)0.9725O3 Relaxor Ferroelectric Ceramics. Electronic Materials Letters, 2019, 15, 323-330.	2.2	43
47	Flexible Dielectric Bi _{1.5} Zn _{1.0} Nb _{1.5} O ₇ Thin Films on a Cuâ€Polyimide Foil. Journal of the American Ceramic Society, 2009, 92, 524-527.	3.8	40
48	Enhanced magnetic energy harvesting properties of magneto-mechano-electric generator by tailored geometry. Applied Physics Letters, 2016, 109, .	3.3	40
49	Enhancement of resonant and non-resonant magnetoelectric coupling in multiferroic laminates with anisotropic piezoelectric properties. Applied Physics Letters, 2013, 102, .	3.3	39
50	Upshift of Phase Transition Temperature in Nanostructured PbTiO ₃ Thick Film for High Temperature Applications. ACS Applied Materials & Interfaces, 2014, 6, 11980-11987.	8.0	38
51	Enhancement of Magnetoelectric Conversion Achieved by Optimization of Interfacial Adhesion Layer in Laminate Composites. ACS Applied Materials & Interfaces, 2018, 10, 32323-32330.	8.0	37
52	Sintering and piezoelectric properties of KNN ceramics doped with KZT. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 2510-2515.	3.0	36
53	Effect of Film Thickness on the Piezoelectric Properties of Lead Zirconate Titanate Thick Films Fabricated by Aerosol Deposition. Journal of the American Ceramic Society, 2011, 94, 1509-1513.	3.8	36
54	Magneto-Mechano-Electric (MME) Energy Harvesting Properties of Piezoelectric Macro-fiber Composite/Ni Magnetoelectric Generator. Energy Harvesting and Systems, 2014, 1, 3-11.	2.7	36

Јилсно Ryu

#	Article	IF	CITATIONS
55	Flexible Self-Charging, Ultrafast, High-Power-Density Ceramic Capacitor System. ACS Energy Letters, 0, , 1383-1391.	17.4	36
56	A Comparison Study of Fatigue Behavior of Hard and Soft Piezoelectric Single Crystal Macro-Fiber Composites for Vibration Energy Harvesting. Sensors, 2019, 19, 2196.	3.8	35
57	Giant Magnetoelectric Coefficient in 3–2 Nanocomposite Thick Films. Japanese Journal of Applied Physics, 2009, 48, 080204.	1.5	34
58	Porous Photocatalytic TiO ₂ Thin Films by Aerosol Deposition. Journal of the American Ceramic Society, 2010, 93, 55-58.	3.8	34
59	Enhanced off-resonance magnetoelectric response in laser annealed PZT thick film grown on magnetostrictive amorphous metal substrate. Applied Physics Letters, 2015, 107, .	3.3	34
60	Strong and anisotropic magnetoelectricity in composites of magnetostrictive Ni and solid-state grown lead-free piezoelectric BZT–BCT single crystals. Journal of Asian Ceramic Societies, 2017, 5, 36-41.	2.3	34
61	Enhanced Self-Biased Magnetoelectric Coupling in Laser-Annealed Pb(Zr,Ti)O ₃ Thick Film Deposited on Ni Foil. ACS Applied Materials & Interfaces, 2018, 10, 11018-11025.	8.0	34
62	Induction of combinatory characteristics by relaxor modification of Pb(Zr0.5Ti0.5)O3. Applied Physics Letters, 2003, 83, 5020-5022.	3.3	33
63	Enhanced domain contribution to ferroelectric properties in freestanding thick films. Journal of Applied Physics, 2009, 106, .	2.5	32
64	Photocatalytic nanocomposite thin films of TiO2-β-calcium phosphate by aerosol-deposition. Catalysis Communications, 2009, 10, 596-599.	3.3	31
65	LaNiO3 conducting particle dispersed NiMn2O4 nanocomposite NTC thermistor thick films by aerosol deposition. Journal of Alloys and Compounds, 2012, 534, 70-73.	5.5	31
66	A flexible, high-performance magnetoelectric heterostructure of (001) oriented Pb(Zr _{0.52} Ti _{0.48})O ₃ film grown on Ni foil. APL Materials, 2017, 5, 096111.	5.1	29
67	Effect of fluorine addition on the biological performance of hydroxyapatite coatings on Ti by aerosol deposition. Journal of Biomaterials Applications, 2013, 27, 587-594.	2.4	27
68	Nano-size grains and high density of 65PMN-35PT thick film for high energy storage capacitor. Ceramics International, 2018, 44, 20111-20114.	4.8	27
69	Tailoring the Magnetoelectric Properties of Pb(Zr,Ti)O ₃ Film Deposited on Amorphous Metglas Foil by Laser Annealing. Journal of the American Ceramic Society, 2016, 99, 2680-2687.	3.8	26
70	Enhanced Energy Storage Performance of Polymer/Ceramic/Metal Composites by Increase of Thermal Conductivity and Coulomb-Blockade Effect. ACS Applied Materials & Interfaces, 2021, 13, 27343-27352.	8.0	26
71	31-mode piezoelectric micromachined ultrasonic transducer with PZT thick film by granule spraying in vacuum process. Applied Physics Letters, 2017, 110, .	3.3	25
72	Colossal magnetoelectric response of PZT thick films on Ni substrates with a conductive LaNiO ₃ electrode. Journal Physics D: Applied Physics, 2013, 46, 092002.	2.8	24

#	Article	IF	CITATIONS
73	Composition dependent ferro-piezo hysteresis loops and energy density properties of mechanically activated (Pb1â~xLax)(Zr0.60Ti0.40)O3 ceramics. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	24
74	Growth of self-textured barium hexaferrite ceramics by normal sintering process and their anisotropic magnetic properties. Journal of the European Ceramic Society, 2017, 37, 4701-4706.	5.7	23
75	Highly tunable magnetoelectric response in dimensional gradient laminate composites of Fe-Ga alloy and Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3 single crystal. Journal of Alloys and Compounds, 2018, 765, 764-770.	5.5	23
76	Face-shear 36-mode magnetoelectric composites with piezoelectric single crystal and Metglas laminate. Applied Physics Letters, 2019, 115, .	3.3	23
77	Effects of Zr/Ti ratio and post-annealing temperature on the electrical properties of lead zirconate titanate (PZT) thick films fabricated by aerosol deposition. Journal of Materials Research, 2008, 23, 226-235.	2.6	22
78	Enhanced bioactivity and biocompatibility of nanostructured hydroxyapatite coating by hydrothermal annealing. Thin Solid Films, 2011, 519, 8085-8090.	1.8	22
79	Dielectric properties of Pb(In 1/2 Nb 1/2)O 3 –Pb(Mg 1/3 Nb 2/3)O 3 –PbTiO 3 film by aerosol deposition for energy storage applications. Ceramics International, 2016, 42, 1740-1745.	4.8	22
80	Exceeding 50ÂmW RMSâ€Output Magnetoâ€Mechanoâ€Electric Generator by Hybridizing Piezoelectric and Electromagnetic Induction Effects. Advanced Functional Materials, 2022, 32, .	14.9	22
81	Preparation of Highly Dense PZN–PZT Thick Films by the Aerosol Deposition Method Using Excess-PbO Powder. Journal of the American Ceramic Society, 2007, 90, 3389-3394.	3.8	21
82	Enhancement of energy storage and thermal stability of relaxor Pb0.92La0.08Zr0.52Ti0.48O3-Bi(Zn0.66Nb0.33)O3 thick films through aerosol deposition. Journal of the European Ceramic Society, 2020, 40, 63-70.	5.7	21
83	Multiscale surface modified magneto-mechano-triboelectric nanogenerator enabled by eco-friendly NaCl imprinting stamp for self-powered IoT applications. Nanoscale, 2021, 13, 8418-8424.	5.6	21
84	Fabrication of Lead Zirconate Titanate Thick Films Using a Powder Containing Organic Residue. Japanese Journal of Applied Physics, 2008, 47, 5545.	1.5	20
85	Roomâ€Temperature Solidâ€State Grown WO 3â^î́ Film on Plastic Substrate for Extremely Sensitive Flexible NO 2 Gas Sensors. Advanced Materials Interfaces, 2018, 5, 1700811.	3.7	20
86	Effect of annealing on properties of lithium aluminum germanium phosphate electrolyte thick films prepared by aerosol deposition. Metals and Materials International, 2014, 20, 399-404.	3.4	19
87	Piezoelectric Thick Film Deposition via Powder/Granule Spray in Vacuum: A Review. Actuators, 2020, 9, 59.	2.3	19
88	Dielectric, Ferroelectric, Energy Storage, and Pyroelectric Properties of Mn-Doped (Pb0.93La0.07)(Zr0.82Ti0.18)O3 Anti-Ferroelectric Ceramics. Journal of the Korean Ceramic Society, 2019, 56, 412-420.	2.3	19
89	Effect of elastic modulus of cantilever beam on the performance of unimorph type piezoelectric energy harvester. APL Materials, 2018, 6, .	5.1	18
90	Evidence of monoclinic phase and its variation with temperature at morphotropic phase boundary of PLZT ceramics. Journal of Alloys and Compounds, 2020, 816, 152613.	5.5	18

Јимсно Куи

#	Article	IF	CITATIONS
91	A Magneto-Mechano-Electric Generator Based on Lead-Free Single-Crystal Fibers for Robust Scavenging of Ambient Magnetic Energy. Electronic Materials Letters, 2020, 16, 369-375.	2.2	18
92	Enhancement of magnetoelectric (ME) coupling by using textured magnetostrictive alloy in 2-2 type ME laminate. Journal of Alloys and Compounds, 2020, 834, 155124.	5.5	18
93	Enhanced pyroelectric response from domain-engineered lead-free (K0.5Bi0.5TiO3-BaTiO3)-Na0.5Bi0.5TiO3 ferroelectric ceramics. Journal of the European Ceramic Society, 2021, 41, 2524-2532.	5.7	18
94	Enhancement of Energy-Harvesting Performance of Magneto–Mechano–Electric Generators through Optimization of the Interfacial Layer. ACS Applied Materials & Interfaces, 2021, 13, 19983-19991.	8.0	18
95	Recent Progress in Devices Based on Magnetoelectric Composite Thin Films. Sensors, 2021, 21, 8012.	3.8	18
96	Effect of tetragonal perovskite phase addition on the electrical properties of KNN thick films fabricated by aerosol deposition. Materials Letters, 2011, 65, 2762-2764.	2.6	17
97	Microstructure and electrochemical properties of iron oxide film fabricated by aerosol deposition method for lithium ion battery. Journal of Power Sources, 2015, 275, 336-340.	7.8	17
98	Experimental investigation on the effect of top electrode diameter in PZT thick films. Materials Letters, 2011, 65, 2193-2196.	2.6	16
99	Effect of electrode and substrate on the fatigue behavior of PZT thick films fabricated by aerosol deposition. Ceramics International, 2012, 38, S241-S244.	4.8	16
100	Effect of gas flow rates and nozzle throat width on deposition of α-alumina films of granule spray in vacuum. Journal of the European Ceramic Society, 2017, 37, 2667-2672.	5.7	16
101	Theoretical prediction of resonant and off-resonant magnetoelectric coupling in layered composites with anisotropic piezoelectric properties. Composite Structures, 2017, 159, 498-504.	5.8	16
102	Increased Energy-Storage Density and Superior Electric Field and Thermally Stable Energy Efficiency of Aerosol-Deposited Relaxor (Pb0.89La0.11)(Zr0.70Ti0.30)O3 Films. Journal of Thermal Spray Technology, 2021, 30, 591-602.	3.1	16
103	Multiferroic BiFeO3 thick film fabrication by aerosol deposition. Metals and Materials International, 2010, 16, 639-642.	3.4	15
104	High Piezoelectric Properties of <scp>KNN</scp> â€Based Thick Films with Abnormal Grain Growth. Journal of the American Ceramic Society, 2012, 95, 1489-1492.	3.8	15
105	Energy storage properties of nano-grained antiferroelectric (Pb,La)(Zr,Ti)O ₃ films prepared by aerosol-deposition method. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22, 1477-1482.	2.9	15
106	Energy storage characteristics of {001} oriented Pb(Zr0.52Ti0.48)O3 thin film grown by chemical solution deposition. Thin Solid Films, 2018, 660, 434-438.	1.8	15
107	Enhanced Mechanical Quality Factor of 32 Mode Mn Doped 71Pb(Mg1/3Nb2/3)O3–29PbZrTiO3 Piezoelectric Single Crystals. Electronic Materials Letters, 2020, 16, 156-163.	2.2	15
108	Effect of aspect ratio of piezoelectric constituents on the energy harvesting performance of magneto-mechano-electric generators. Energy, 2022, 239, 122078.	8.8	15

Јинсно Ryu

#	Article	IF	CITATIONS
109	High Dielectric Properties of Bi _{1.5} Zn _{1.0} Nb _{1.5} O ₇ Thin Films Fabricated at Room Temperature. Journal of the American Ceramic Society, 2008, 91, 3399-3401.	3.8	14
110	Piezoelectric Performance of Cubicâ€Phase BaTiO ₃ Nanoparticles Vertically Aligned via Electric Field. Advanced Sustainable Systems, 2018, 2, 1700133.	5.3	13
111	Ultra-magnetic field sensitive magnetoelectric composite with sub-pT detection limit at low frequency enabled by flash photon annealing. Nano Energy, 2021, 90, 106598.	16.0	13
112	Stable output performance generated from a magneto-mechano-electric generator having self-resonance tunability with a movable proof mass. Nano Energy, 2022, 101, 107607.	16.0	13
113	Next Generation Ceramic Substrate Fabricated at Room Temperature. Scientific Reports, 2017, 7, 6637.	3.3	12
114	Effect of Thickness Ratio in Piezoelectric/Elastic Cantilever Structure on the Piezoelectric Energy Harvesting Performance. Electronic Materials Letters, 2019, 15, 61-69.	2.2	12
115	Investigation of the Effects of Reduced Sintering Temperature on Dielectric, Ferroelectric and Energy Storage Properties of Microwave-Sintered PLZT 8/60/40 Ceramics. Energies, 2020, 13, 6457.	3.1	12
116	Induced slim ferroelectric hysteresis loops and enhanced energy-storage properties of Mn-doped (Pb0·93La0.07)(Zr0·82Ti0.18)O3 anti-ferroelectric thick films by aerosol deposition. Ceramics International, 2021, 47, 31590-31596.	4.8	12
117	Fractal cluster modeling of the fatigue behavior of lead zirconate titanate. Applied Physics Letters, 2002, 80, 1625-1627.	3.3	11
118	Roomâ€ŧemperature multiferroicity in NiFe ₂ O ₄ and its magnetoelectric coupling intensified through defect engineering. Journal of the American Ceramic Society, 2021, 104, 6384-6392.	3.8	11
119	Artificially induced normal ferroelectric behaviour in aerosol deposited relaxor 65PMN–35PT thick films by interface engineering. Journal of Materials Chemistry C, 2021, 9, 3403-3411.	5.5	11
120	Boosting the lifespan of magneto-mechano-electric generator via vertical installation for sustainable powering of Internet of Things sensor. Nano Energy, 2022, 101, 107567.	16.0	10
121	Lead-based and lead-free ferroelectric ceramic capacitors for electrical energy storage. , 2021, , 279-356.		9
122	Stress Modulation and Ferroelectric Properties of Nanograined <scp><scp>PbTiO</scp></scp> ₃ Thick Films on the Different Substrates Fabricated by Aerosol Deposition. Journal of the American Ceramic Society, 2014, 97, 3872-3876.	3.8	8
123	Dependence of the ferroelectric properties of modified spin-coating-derived PZT thick films on the crystalline orientation. Journal of the Korean Physical Society, 2016, 68, 1390-1394.	0.7	8
124	A thickness-mode piezoelectric micromachined ultrasound transducer annular array using a PMN–PZT single crystal. Journal of Micromechanics and Microengineering, 2018, 28, 075015.	2.6	8
125	Redox-active electrolyte-based MnWO4//AC asymmetric supercapacitors. Journal of Materials Science: Materials in Electronics, 2021, 32, 8054-8063.	2.2	8
126	High performance of polycrystalline piezoelectric ceramic-based magneto-mechano-electric energy generators. Journal of Asian Ceramic Societies, 2021, 9, 1290-1297.	2.3	8

Јинсно Ryu

#	Article	IF	CITATIONS
127	Enhancement of pyroelectricity in Mn-doped (011) 71Pb(Mg1/3Nb2/3)O3–6PbZrO3–23PbTiO3 single crystals. Applied Physics Letters, 2021, 119, .	3.3	8
128	Effect of cooling rates on mechanical properties of alumina-toughened zirconia composites. Ceramics International, 2022, 48, 21048-21053.	4.8	8
129	Energy storage properties of Dy3+ doped Sr0.5Ba0.5Nb2O6 thick film with nano-size grains. Metals and Materials International, 2017, 23, 1045-1049.	3.4	7
130	Improvement of Energy Storage Characteristics of (Ba0.7Ca0.3)TiO3 Thick Films by the Increase of Electric Breakdown Strength from Nano-Sized Grains. Korean Journal of Materials Research, 2019, 29, 73-78.	0.2	7
131	Photonic Drying/Annealing: Effect of Oven/Visible Light/Infrared Light/Flash-Lamp Drying/Annealing on WO ₃ for Electrochromic Smart Windows. ACS Sustainable Chemistry and Engineering, 2021, 9, 14559-14568.	6.7	7
132	Modulation of magnetoelectric coupling through systematically engineered spin canting in nickel–zinc ferrite. Journal of the American Ceramic Society, 2022, 105, 2655-2662.	3.8	7
133	Reliability of Ferroelectric Multilayer PZT Thick Films Fabricated by Aerosol Deposition. Ferroelectrics, 2014, 470, 183-193.	0.6	6
134	2â€2 Structured Magnetoelectric Composites by Aerosol Deposition. Journal of the American Ceramic Society, 2012, 95, 855-858.	3.8	5
135	Thermal treatment effect on the magnetoelectric properties of (Ni0.5Zn0.5)Fe2O4/Pt/Pb(Zr0.3Ti0.7)O3 heterostructured thin films. Ceramics International, 2021, 47, 6371-6375.	4.8	5
136	Fabrication of High Density BZN-PVDF Composite Film by Aerosol Deposition for High Energy Storage Properties. Korean Journal of Materials Research, 2019, 29, 175-182.	0.2	5
137	Boosting the performance of magneto-mechano-electric energy generator using magnetic lens. Sensors and Actuators A: Physical, 2022, 338, 113451.	4.1	5
138	Selfâ€Powered Devices: Selfâ€Powered Wireless Sensor Node Enabled by an Aerosolâ€Deposited PZT Flexible Energy Harvester (Adv. Energy Mater. 13/2016). Advanced Energy Materials, 2016, 6, .	19.5	4
139	Composition Design Rule for High Piezoelectric Voltage Coefficient in (K _{0.5} Na _{0.5} NbO ₃ Based Pb-Free Ceramics. Japanese Journal of Applied Physics, 2012, 51, 09MD10.	1.5	4
140	Study of magnetoelectric coupling in magnetoelectric laminates fabricated using 15-mode PMN-PZT single crystals. Journal of the Korean Ceramic Society, 2022, 59, 322-328.	2.3	4
141	High-performance magneto-mechano-electric generator through optimization of magnetic flux concentration. Sustainable Energy and Fuels, 0, , .	4.9	4
142	Applications of Multiferroic Magnetoelectric Composites. Series in Materials Science and Engineering, 2016, , 215-254.	0.1	3
143	Photocatalytic activities of hydrothermal synthesized copper zinc tin sulfide nanostructures. Journal of Materials Science: Materials in Electronics, 2021, 32, 22803-22812.	2.2	3
144	Surface hardening treatment of Fe40(CoCrMnNi)60 medium entropy alloy via aerosol deposition technique: A new approach. Materials Letters, 2020, 269, 127633.	2.6	2

#	Article	IF	CITATIONS
145	Enhanced magnetoelectric coupling in stretch-induced shear mode magnetoelectric composites. Journal of the Korean Ceramic Society, 2021, 58, 700-705.	2.3	2
146	Sensing of ultra-low magnetic field by magnetoelectric (ME) composites. Ceramist, 2020, 23, 38-53.	0.1	2
147	First principle understanding of antiferroelectric ordering in La-doped silver niobate. Physica B: Condensed Matter, 2022, 640, 414040.	2.7	2
148	Harvesting stray magnetic field for powering wireless sensors. , 2021, , 249-278.		1
149	Effect of substrate morphology on the deposition behavior of α-Al2O3 films by room temperature granule spray in vacuum process. Ceramics International, 2021, 47, 16708-16715.	4.8	1
150	Fabrication and Characterization of Hybrid NTC Thermistor Films with Conducting Oxide Particles by an Aerosol-Deposition Process. Journal of the Korean Ceramic Society, 2013, 50, 63-69.	2.3	0
151	Recent Reports of Magneto-Mechano-Electric Conversion Composites. Ceramist, 2021, 24, 248-259.	0.1	0