
Hesham A Sadek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4667385/publications.pdf Version: 2024-02-01

HESHAM & SADEK

#	Article	IF	CITATIONS
1	Transient Regenerative Potential of the Neonatal Mouse Heart. Science, 2011, 331, 1078-1080.	12.6	2,117
2	Hippo pathway effector Yap promotes cardiac regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13839-13844.	7.1	735
3	The Oxygen-Rich Postnatal Environment Induces Cardiomyocyte Cell-Cycle Arrest through DNA Damage Response. Cell, 2014, 157, 565-579.	28.9	688
4	Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proceedings of the United States of America, 2013, 110, 187-192.	7.1	654
5	Hypoxia induces heart regeneration in adult mice. Nature, 2017, 541, 222-227.	27.8	566
6	Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature, 2013, 497, 249-253.	27.8	470
7	Cardiomyocyte Regeneration. Circulation, 2017, 136, 680-686.	1.6	417
8	Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature, 2015, 523, 226-230.	27.8	284
9	Extracellular vesicle-based interorgan transport of mitochondria from energetically stressed adipocytes. Cell Metabolism, 2021, 33, 1853-1868.e11.	16.2	165
10	Surgical models for cardiac regeneration in neonatal mice. Nature Protocols, 2014, 9, 305-311.	12.0	150
11	Mitochondrial substrate utilization regulates cardiomyocyte cell-cycle progression. Nature Metabolism, 2020, 2, 167-178.	11.9	131
12	Cardiogenic small molecules that enhance myocardial repair by stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6063-6068.	7.1	114
13	Toward the Goal of Human Heart Regeneration. Cell Stem Cell, 2020, 26, 7-16.	11.1	114
14	Human Ventricular Unloading Induces Cardiomyocyte Proliferation. Journal of the American College of Cardiology, 2015, 65, 892-900.	2.8	111
15	Mitochondrial metabolism in hematopoietic stem cells requires functional <scp>FOXO</scp> 3. EMBO Reports, 2015, 16, 1164-1176.	4.5	109
16	Cardiomyocyte renewal in the human heart: insights from the fall-out. European Heart Journal, 2017, 38, 2333-2342.	2.2	109
17	Fibroblast Primary Cilia Are Required for Cardiac Fibrosis. Circulation, 2019, 139, 2342-2357.	1.6	101
18	Neonatal Heart Regeneration. Circulation, 2018, 138, 412-423.	1.6	95

HESHAM A SADEK

#	Article	IF	CITATIONS
19	Hypoxic metabolism in human hematopoietic stem cells. Cell and Bioscience, 2015, 5, 39.	4.8	77
20	A calcineurin–Hoxb13 axis regulates growth mode of mammalian cardiomyocytes. Nature, 2020, 582, 271-276.	27.8	77
21	Inflammation-Induced Oxidative Stress Mediates Gene Fusion Formation in Prostate Cancer. Cell Reports, 2016, 17, 2620-2631.	6.4	68
22	Multi-Investigator Letter on Reproducibility of Neonatal Heart Regeneration following Apical Resection. Stem Cell Reports, 2014, 3, 1.	4.8	65
23	Mitochondrial Substrate Utilization Regulates Cardiomyocyte Cell Cycle Progression. Nature Metabolism, 2020, 2, 167-178.	11.9	49
24	Compartmentalized metabolism supports midgestation mammalian development. Nature, 2022, 604, 349-353.	27.8	47
25	The Effect of Hypoxia on Cardiovascular Disease: Friend or Foe?. High Altitude Medicine and Biology, 2018, 19, 124-130.	0.9	38
26	Hypoxia-induced myocardial regeneration. Journal of Applied Physiology, 2017, 123, 1676-1681.	2.5	32
27	Dysfunctional telomeres trigger cellular senescence mediated by cyclic GMP-AMP synthase. Journal of Biological Chemistry, 2020, 295, 11144-11160.	3.4	32
28	Regulator of Calcineurin 1 helps coordinate wholeâ€body metabolism and thermogenesis. EMBO Reports, 2018, 19, .	4.5	30
29	Clinically approved CFTR modulators rescue Nrf2 dysfunction in cystic fibrosis airway epithelia. Journal of Clinical Investigation, 2019, 129, 3448-3463.	8.2	27
30	Mechanisms of Neonatal Heart Regeneration. Current Cardiology Reports, 2020, 22, 33.	2.9	25
31	C-Kit Cells Do Not Significantly Contribute to Cardiomyogenesis During Neonatal Heart Regeneration. Circulation, 2019, 139, 559-561.	1.6	19
32	Use of ferumoxides for stem cell labeling. Regenerative Medicine, 2008, 3, 807-816.	1.7	16
33	Bone-Marrow-Derived Side Population Cells for Myocardial Regeneration. Journal of Cardiovascular Translational Research, 2009, 2, 173-181.	2.4	16
34	Hypoxia promotes primitive glycosaminoglycan-rich extracellular matrix composition in developing heart valves. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H1143-H1154.	3.2	16
35	Mitochondrial fatty acid utilization increases chromatin oxidative stress in cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
36	A Hippo "AKT―Regulates Cardiomyocyte Proliferation. Circulation Research, 2015, 116, 3-5.	4.5	10

HESHAM A SADEK

#	Article	IF	CITATIONS
37	Mechanism of Eccentric Cardiomyocyte Hypertrophy Secondary to Severe Mitral Regurgitation. Circulation, 2020, 141, 1787-1799.	1.6	10
38	Homotypic Fusion Generates Multinucleated Cardiomyocytes in the Murine Heart. Circulation, 2020, 141, 1940-1942.	1.6	9
39	Identification of tetracycline combinations as EphB1 tyrosine kinase inhibitors for treatment of neuropathic pain. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
40	NBS1-CtlP–mediated DNA end resection suppresses cGAS binding to micronuclei. Nucleic Acids Research, 2022, 50, 2681-2699.	14.5	8
41	Case of Anomalous Right Superior Vena Cava. Circulation, 2006, 114, e532-3.	1.6	7
42	Neonatal heart regeneration: Moving from phenomenology to regenerative medicine. Journal of Thoracic and Cardiovascular Surgery, 2020, 159, 2451-2455.	0.8	7
43	Turning back the clock: A concise viewpoint of cardiomyocyte cell cycle activation for myocardial regeneration and repair. Journal of Molecular and Cellular Cardiology, 2022, 170, 15-21.	1.9	4
44	Metabolic Cross Talk Between Foxo3 and mTOR Is Essential for Hematopoietic Stem Cell Function. Blood, 2012, 120, 856-856.	1.4	3
45	Targeting calcineurin induces cardiomyocyte proliferation in adult mice. , 2022, 1, 679-688.		2
46	Experimental Hypoxia as a Model for Cardiac Regeneration in Mice. Methods in Molecular Biology, 2021, 2158, 337-344.	0.9	1
47	525. Atovaquone for Treatment of COVID-19 (Ataq COVID-19) Trial. Open Forum Infectious Diseases, 2021, 8, S363-S364.	0.9	1
48	Abstract 20492: Mlf1 Regulates Myocyte Proliferation in Postnatal Hearts. Circulation, 2014, 130, .	1.6	0
49	Evolution of Human Pulmonary Hemodynamics during Severe Sustained Hypoxia. FASEB Journal, 2019, 33, 531.5.	0.5	0