
Yuntong Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4667152/publications.pdf Version: 2024-02-01

Уимтомс 7ни

#	Article	IF	CITATIONS
1	Processing thin but robust electrolytes for solid-state batteries. Nature Energy, 2021, 6, 227-239.	39.5	328
2	Systematic study on structural and electronic properties of diamine/triamine functionalized graphene networks for supercapacitor application. Nano Energy, 2017, 31, 183-193.	16.0	124
3	Molecular Level Study of Graphene Networks Functionalized with Phenylenediamine Monomers for Supercapacitor Electrodes. Chemistry of Materials, 2016, 28, 9110-9121.	6.7	98
4	Lithium-film ceramics for solid-state lithionic devices. Nature Reviews Materials, 2021, 6, 313-331.	48.7	80
5	Effect of polymer binders on graphene-based free-standing electrodes for supercapacitors. Electrochimica Acta, 2018, 267, 213-221.	5.2	44
6	Boron-doped coronenes with high redox potential for organic positive electrodes in lithium-ion batteries: a first-principles density functional theory modeling study. Journal of Materials Chemistry A, 2018, 6, 10111-10120.	10.3	22
7	A sinter-free future for solid-state battery designs. Energy and Environmental Science, 2022, 15, 2927-2936.	30.8	15
8	Thermodynamic and kinetic analysis for carbothermal reduction process of CoSb alloy powders used as anode for lithium ion batteries. Journal of Alloys and Compounds, 2011, 509, 7657-7661.	5.5	9
9	Three-dimensional graphene-based composite for flexible electronic applications. , 2015, , .		9
10	Highly Conductive Polyurethane/Polyaniline-Based Composites for Wearable Electronic Applications. , 2016, , .		7
11	Miniaturized Integrated Micro-Supercapacitors as Efficient Power Sources for Wearable and Biocompatible Electronic Devices. , 2016, , .		4
12	Sub-stoichiometry-facilitated oxidation kinetics in a δ-TixC-doped Ti-based alloy. Npj Materials Degradation, 2019, 3, .	5.8	4
13	Synthesis and electrochemical characterization of InSn4 and InSn4/C as new anode materials for lithium-ion batteries. Ionics, 2013, 19, 709-715.	2.4	1
14	Understanding Crystallization Kinetics of Wet-Chemically and Low-Temperature Processed Li-Garnets from Amorphous to Crystalline Phases. ECS Meeting Abstracts, 2019, , .	0.0	0