Eugenio Monti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4666153/publications.pdf

Version: 2024-02-01

		201674	175258
83	3,007	27	52
papers	citations	h-index	g-index
83	83	83	3139
03	03		3133
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cloning of the Gene Encoding a Novel Integral Membrane Protein, Mucolipidin—and Identification of the Two Major Founder Mutations Causing Mucolipidosis Type IV. American Journal of Human Genetics, 2000, 67, 1110-1120.	6.2	230
2	Sialidases in Vertebrates. Advances in Carbohydrate Chemistry and Biochemistry, 2010, 64, 403-479.	0.9	152
3	Crystal Structure of the Human Cytosolic Sialidase Neu2. Journal of Biological Chemistry, 2005, 280, 469-475.	3.4	148
4	Recent development in mammalian sialidase molecular biology. Neurochemical Research, 2002, 27, 649-663.	3.3	142
5	Identification and expression of NEU3, a novel human sialidase associated to the plasma membrane. Biochemical Journal, 2000, 349, 343-351.	3.7	141
6	The Plasma Membrane-associated Sialidase MmNEU3 Modifies the Ganglioside Pattern of Adjacent Cells Supporting Its Involvement in Cell-to-Cell Interactions. Journal of Biological Chemistry, 2004, 279, 16989-16995.	3.4	130
7	Molecular cloning and characterization of NEU4, the fourth member of the human sialidase gene family. Genomics, 2004, 83, 445-453.	2.9	103
8	Cloning and Characterization of NEU2, a Human Gene Homologous to Rodent Soluble Sialidases. Genomics, 1999, 57, 137-143.	2.9	95
9	Identification and expression of NEU3, a novel human sialidase associated to the plasma membrane. Biochemical Journal, 2000, 349, 343.	3.7	95
10	Cystatin C is released in association with exosomes: A new tool of neuronal communication which is unbalanced in Alzheimer's disease. Neurobiology of Aging, 2011, 32, 1435-1442.	3.1	90
11	Reversine-treated fibroblasts acquire myogenic competence in vitro and in regenerating skeletal muscle. Cell Death and Differentiation, 2006, 13, 2042-2051.	11.2	89
12	Gangliosides play an important role in the organization of CD82-enriched microdomains. Biochemical Journal, 2006, 400, 315-325.	3.7	81
13	Sialidase NEU3 is a peripheral membrane protein localized on the cell surface and in endosomal structures. Biochemical Journal, 2007, 408, 211-219.	3.7	81
14	Overexpression of wild-type and mutant mucolipin proteins in mammalian cells: effects on the late endocytic compartment organization. FEBS Letters, 2004, 567, 219-224.	2.8	73
15	Properties of Recombinant Human Cytosolic Sialidase HsNEU2. Journal of Biological Chemistry, 2004, 279, 3169-3179.	3.4	72
16	Complexity in Influenza Virus Targeted Drug Design: Interaction with Human Sialidases. Journal of Medicinal Chemistry, 2010, 53, 2998-3002.	6.4	62
17	Human sialidase NEU4 long and short are extrinsic proteins bound to outer mitochondrial membrane and the endoplasmic reticulum, respectively. Glycobiology, 2010, 20, 148-157.	2.5	55
18	Knock-down of pantothenate kinase 2 severely affects the development of the nervous and vascular system in zebrafish, providing new insights into PKAN disease. Neurobiology of Disease, 2016, 85, 35-48.	4.4	55

#	Article	IF	CITATIONS
19	Structure and Function of Mammalian Sialidases. Topics in Current Chemistry, 2012, 366, 183-208.	4.0	51
20	New Insights on the Sialidase Protein Family Revealed by a Phylogenetic Analysis in Metazoa. PLoS ONE, 2012, 7, e44193.	2.5	48
21	NEU3 activity enhances EGFR activation without affecting EGFR expression and acts on its sialylation levels. Glycobiology, 2015, 25, 855-868.	2.5	48
22	Expression of Sialidase Neu2 in Leukemic K562 Cells Induces Apoptosis by Impairing Bcr-Abl/Src Kinases Signaling. Journal of Biological Chemistry, 2007, 282, 14364-14372.	3.4	47
23	NEU3 Sialidase Strictly Modulates GM3 Levels in Skeletal Myoblasts C2C12 Thus Favoring Their Differentiation and Protecting Them from Apoptosis. Journal of Biological Chemistry, 2008, 283, 36265-36271.	3.4	44
24	Down-regulation of coasy, the gene associated with NBIA-VI, reduces Bmp signaling, perturbs dorso-ventral patterning and alters neuronal development in zebrafish. Scientific Reports, 2016, 6, 37660.	3.3	42
25	Cavin-1 and Caveolin-1 are both required to support cell proliferation, migration and anchorage-independent cell growth in rhabdomyosarcoma. Laboratory Investigation, 2015, 95, 585-602.	3.7	37
26	Implications for the mammalian sialidases in the physiopathology of skeletal muscle. Skeletal Muscle, 2012, 2, 23.	4.2	29
27	Exosomes Secreted by HeLa Cells Shuttle on Their Surface the Plasma Membrane-Associated Sialidase NEU3. Biochemistry, 2017, 56, 6401-6408.	2.5	29
28	Molecular cloning and biochemical characterization of sialidases from zebrafish (<i>Danio) Tj ETQq0 0 0 rgBT /0</i>	Overlock 10	0 Tf 50 382 To
29	Detecting Î ² -Casein Variation in Bovine Milk. Molecules, 2016, 21, 141.	3.8	
		3.6	28
30	Cellular expression and alternative splicing of SLC25A23, a member of the mitochondrial Ca2+-dependent solute carrier gene family. Gene, 2005, 345, 173-182.	2.2	28
31	Cellular expression and alternative splicing of SLC25A23, a member of the mitochondrial Ca2+-dependent solute carrier gene family. Gene, 2005, 345, 173-182. Rhabdomyosarcomas: an overview on the experimental animal models. Journal of Cellular and Molecular Medicine, 2012, 16, 1377-1391.		
	Ca2+-dependent solute carrier gene family. Gene, 2005, 345, 173-182. Rhabdomyosarcomas: an overview on the experimental animal models. Journal of Cellular and	2.2	27
31	Ca2+-dependent solute carrier gene family. Gene, 2005, 345, 173-182. Rhabdomyosarcomas: an overview on the experimental animal models. Journal of Cellular and Molecular Medicine, 2012, 16, 1377-1391. Molecular cloning and knockdown of galactocerebrosidase in zebrafish: New insights into the pathogenesis of Krabbe's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842,	2.2 3.6	27 27
31	Ca2+-dependent solute carrier gene family. Gene, 2005, 345, 173-182. Rhabdomyosarcomas: an overview on the experimental animal models. Journal of Cellular and Molecular Medicine, 2012, 16, 1377-1391. Molecular cloning and knockdown of galactocerebrosidase in zebrafish: New insights into the pathogenesis of Krabbe's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 665-675. Uptake and metabolism of a fluorescent sulfatide analogue in cultured skin fibroblasts. Lipids and	2.2 3.6 3.8	27 27 26
31 32 33	Ca2+-dependent solute carrier gene family. Gene, 2005, 345, 173-182. Rhabdomyosarcomas: an overview on the experimental animal models. Journal of Cellular and Molecular Medicine, 2012, 16, 1377-1391. Molecular cloning and knockdown of galactocerebrosidase in zebrafish: New insights into the pathogenesis of Krabbe's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 665-675. Uptake and metabolism of a fluorescent sulfatide analogue in cultured skin fibroblasts. Lipids and Lipid Metabolism, 1992, 1124, 80-87. MmNEU3 sialidase overâ€expression in C2C12 myoblasts delays differentiation and induces hypertrophic	2.2 3.6 3.8 2.6	27 27 26 23

#	Article	IF	Citations
37	Point mutated caveolin-3 form (P104L) impairs myoblast differentiation via Akt and p38 signalling reduction, leading to an immature cell signature. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 468-479.	3.8	21
38	Caveolin-1 promotes radioresistance in rhabdomyosarcoma through increased oxidative stress protection and DNA repair. Cancer Letters, 2021, 505, 1-12.	7.2	21
39	Sialidase NEU3 Dynamically Associates to Different Membrane Domains Specifically Modifying Their Ganglioside Pattern and Triggering Akt Phosphorylation. PLoS ONE, 2014, 9, e99405.	2.5	20
40	Non-small cell lung cancer (NSCLC), EGFR downstream pathway activation and TKI targeted therapies sensitivity: Effect of the plasma membrane-associated NEU3. PLoS ONE, 2017, 12, e0187289.	2.5	20
41	Occurrence in Brain Lysosomes of a Sialidase Active on Ganglioside. Journal of Neurochemistry, 1989, 53, 672-680.	3.9	19
42	Melatonin decreases cell proliferation, impairs myogenic differentiation and triggers apoptotic cell death in rhabdomyosarcoma cell lines. Oncology Reports, 2015, 34, 279-287.	2.6	19
43	Caveolin-1, Caveolin-2 and Cavin-1 are strong predictors of adipogenic differentiation in human tumors and cell lines of liposarcoma. European Journal of Cell Biology, 2016, 95, 252-264.	3.6	19
44	C9orf72 Intermediate Alleles in Patients with Amyotrophic Lateral Sclerosis, Systemic Lupus Erythematosus, and Rheumatoid Arthritis. NeuroMolecular Medicine, 2019, 21, 150-159.	3.4	19
45	Zebrafish disease models in hematology: Highlights on biological and translational impact. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 620-633.	3.8	18
46	Modification of sialidase levels and sialoglycoconjugate pattern during erythroid and erytroleukemic cell differentiation. Glycoconjugate Journal, 2006, 24, 67-79.	2.7	17
47	A Fish-Specific Transposable Element Shapes the Repertoire of p53 Target Genes in Zebrafish. PLoS ONE, 2012, 7, e46642.	2.5	17
48	Human sialic acid acetyl esterase: Towards a better understanding of a puzzling enzyme. Glycobiology, 2015, 25, 992-1006.	2.5	17
49	Uncovering metabolism in rhabdomyosarcoma. Cell Cycle, 2016, 15, 184-195.	2.6	17
50	Deregulation of sialidases in human normal and tumor tissues. Cancer Biomarkers, 2018, 21, 591-601.	1.7	17
51	Phosphocaveolin-1 Enforces Tumor Growth and Chemoresistance in Rhabdomyosarcoma. PLoS ONE, 2014, 9, e84618.	2.5	17
52	Identification of lysosomal sialidase NEU1 and plasma membrane sialidase NEU3 in human erythrocytes. Journal of Cellular Biochemistry, 2013, 114, 204-211.	2.6	16
53	Substrate-Immobilized HIV-1 Tat Drives VEGFR2/α _v β ₃ –Integrin Complex Formation and Polarization in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, e25-34.	2.4	15
54	Sialic acid as a target for the development of novel antiangiogenic strategies. Future Medicinal Chemistry, 2018, 10, 2835-2854.	2.3	15

#	Article	IF	CITATIONS
55	Molecular insight into substrate recognition by human cytosolic sialidase NEU2. Proteins: Structure, Function and Bioinformatics, 2012, 80, 1123-1132.	2.6	14
56	Caveolins in rhabdomyosarcoma. Journal of Cellular and Molecular Medicine, 2011, 15, 2553-2568.	3.6	13
57	Inhibition of the Biological Activity of Human Interferon- \hat{l}^3 by Antipeptide Antibodies. Journal of Interferon Research, 1992, 12, 49-54.	1.2	11
58	The Downregulation of c19orf12 Negatively Affects Neuronal and Musculature Development in Zebrafish Embryos. Frontiers in Cell and Developmental Biology, 2020, 8, 596069.	3.7	11
59	Identification of p53-target genes in Danio rerio. Scientific Reports, 2016, 6, 32474.	3.3	10
60	<p>Animal models of well-differentiated/dedifferentiated liposarcoma: utility and limitations</p> . OncoTargets and Therapy, 2019, Volume 12, 5257-5268.	2.0	10
61	Over-expression of mammalian sialidase NEU3 reduces Newcastle disease virus entry and propagation in COS7 cells. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 504-512.	2.4	9
62	Analysis of three μ1â€AP1 subunits during zebrafish development. Developmental Dynamics, 2014, 243, 299-314.	1.8	9
63	7-Hydroxymatairesinol improves body weight, fat and sugar metabolism in C57BJ/6 mice on a high-fat diet. British Journal of Nutrition, 2018, 120, 751-762.	2.3	9
64	Gallus gallus NEU3 sialidase as model to study protein evolution mechanism based on rapid evolving loops. BMC Biochemistry, 2011, 12, 45.	4.4	8
65	A proline-rich loop mediates specific functions of human sialidase NEU4 in SK-N-BE neuronal differentiation. Glycobiology, 2013, 23, 1499-1509.	2.5	8
66	Expression of activated VEGFR2 by R1051Q mutation alters the energy metabolism of Sk-Mel-31 melanoma cells by increasing glutamine dependence. Cancer Letters, 2021, 507, 80-88.	7.2	8
67	A novel variant of VEGFR2 identified by a pan-cancer screening of recurrent somatic mutations in the catalytic domain of tyrosine kinase receptors enhances tumor growth and metastasis. Cancer Letters, 2021, 496, 84-92.	7.2	7
68	Agro-Industrial Wastes: A Substrate for Multi-Enzymes Production by Cryphonectria parasitica. Fermentation, 2021, 7, 279.	3.0	7
69	In Silico Identification of New Putative Pathogenic Variants in the Neu1 Sialidase Gene Affecting Enzyme Function and Subcellular Localization. PLoS ONE, 2014, 9, e104229.	2.5	6
70	Cytosolic sialidase from pig brain: a †protein complex†containing catalytic and protective units. BBA - Proteins and Proteomics, 1994, 1208, 229-237.	2.1	5
71	Focus on the role of Caveolin and Cavin protein families in liposarcoma. Differentiation, 2017, 94, 21-26.	1.9	5
72	Genomic and biochemical characterization of sialic acid acetylesterase (siae) in zebrafish. Glycobiology, 2017, 27, 938-946.	2.5	5

#	Article	IF	CITATIONS
73	Overexpression of sialidase NEU3 increases the cellular radioresistance potential of U87MG glioblastoma cells. Biochemical and Biophysical Research Communications, 2019, 508, 31-36.	2.1	5
74	Role of NEU3 Overexpression in the Prediction of Efficacy of EGFR-Targeted Therapies in Colon Cancer Cell Lines. International Journal of Molecular Sciences, 2020, 21, 8805.	4.1	5
75	Cavin-2 is a specific marker for detection of well-differentiated liposarcoma. Biochemical and Biophysical Research Communications, 2017, 493, 660-665.	2.1	5
76	Development of BCR-ABL1 Transgenic Zebrafish Model Reproducing Chronic Myeloid Leukemia (CML) Like-Disease and Providing a New Insight into CML Mechanisms. Cells, 2021, 10, 445.	4.1	4
77	Identification of a phosphorylated form of phosphoenolpyruvate carboxykinase from the yeast Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Molecular Cell Research, 1987, 930, 220-229.	4.1	3
78	Looking at Human Cytosolic Sialidase NEU2 Structural Features with an Interdisciplinary Approach. Biochemistry, 2014, 53, 5343-5355.	2.5	3
79	High-mobility group box-1 protein as a novel biomarker to diagnose healthcare-associated ventriculitis and meningitis: a pilot study. Minerva Anestesiologica, 2021, 87, 43-51.	1.0	3
80	MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line. PLoS ONE, 2015, 10, e0130287.	2.5	2
81	Insights into Cadmium-Induced Carcinogenesis through an In Vitro Study Using C3H10T1/2Cl8 Cells: The Multifaceted Role of Mitochondria. International Journal of Molecular Sciences, 2021, 22, 10837.	4.1	2
82	High-titre antibodies to a foreign epitope elicited by affinity-purified hybrid LamB proteins. Vaccine, 1993, 11, 1093-1096.	3.8	1
83	Characterization of three sialidases from Danio rerio. Biochimie, 2021, 187, 57-66.	2.6	1