Richard O Prum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4665659/publications.pdf

Version: 2024-02-01

130 papers 24,713 citations

54 h-index 123 g-index

138 all docs

138 does citations

times ranked

138

45551 citing authors

#	Article	IF	CITATIONS
1	Hummingbird plumage color diversity exceeds the known gamut of all other birds. Communications Biology, 2022, 5, .	2.0	4
2	Higher-Order Musical Temporal Structure in Bird Song. Frontiers in Psychology, 2021, 12, 629456.	1.1	1
3	Recent divergence and lack of shared phylogeographic history characterize the diversification of neotropical savanna birds. Journal of Biogeography, 2021, 48, 1124-1137.	1.4	13
4	Constraint and Function in the Predefinitive Plumages of Manakins (Aves: Pipridae). Integrative and Comparative Biology, 2021, 61, 1363-1377.	0.9	4
5	Evolution of single gyroid photonic crystals in bird feathers. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	26
6	Genomic phylogeography of the White-crowned Manakin Pseudopipra pipra (Aves: Pipridae) illuminates a continental-scale radiation out of the Andes. Molecular Phylogenetics and Evolution, 2021, 164, 107205.	1.2	12
7	Structural color from solid-state polymerization-induced phase separation. Soft Matter, 2021, 17, 5772-5779.	1.2	12
8	Expanding the eggshell colour gamut: uroerythrin and bilirubin from tinamou (Tinamidae) eggshells. Scientific Reports, 2020, 10, 11264.	1.6	9
9	Convergent evolution of super black plumage near bright color in 15 bird families. Journal of Experimental Biology, 2019, 222, .	0.8	19
10	Structurally assisted super black in colourful peacock spiders. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190589.	1.2	30
11	Female resistance to sexual coercion can evolve to preserve the indirect benefits of mate choice. Journal of Evolutionary Biology, 2019, 32, 545-558.	0.8	9
12	Pervasive Correlated Evolution in Gene Expression Shapes Cell and Tissue Type Transcriptomes. Genome Biology and Evolution, 2018, 10, 538-552.	1.1	70
13	Complex coevolution of wing, tail, and vocal sounds of courting male bee hummingbirds. Evolution; International Journal of Organic Evolution, 2018, 72, 630-646.	1.1	35
14	Structural absorption by barbule microstructures of super black bird of paradise feathers. Nature Communications, 2018, 9, 1.	5.8	12,629
15	Evidence of phenotypic plasticity of penis morphology and delayed reproductive maturation in response to male competition in waterfowl. Auk, 2017, 134, 882-893.	0.7	13
16	The biology of color. Science, 2017, 357, .	6.0	509
17	<i>Smithornis</i> broadbills produce loud wing song by aeroelastic flutter of medial primary wing feathers. Journal of Experimental Biology, 2016, 219, 1069-1075.	0.8	15
18	A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature, 2016, 534, S7-S8.	13.7	872

#	Article	IF	CITATIONS
19	Mimicry Cycles, Traps, and Chains: The Coevolution of Toucan and Kiskadee Mimicry. American Naturalist, 2016, 187, 753-764.	1.0	8
20	Domain morphology, boundaries, and topological defects in biophotonic gyroid nanostructures of butterfly wing scales. Science Advances, 2016, 2, e1600149.	4.7	29
21	Theory of the development of curved barbs and their effects on feather morphology. Journal of Morphology, 2016, 277, 995-1013.	0.6	10
22	Fruit advertisement strategies in two Neotropical plant–seed disperser markets. Evolutionary Ecology, 2015, 29, 489-509.	0.5	19
23	Barb geometry of asymmetrical feathers reveals a transitional morphology in the evolution of avian flight. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142864.	1.2	69
24	Mechanisms and Evidence of Genital Coevolution: The Roles of Natural Selection, Mate Choice, and Sexual Conflict. Cold Spring Harbor Perspectives in Biology, 2015, 7, a017749.	2.3	90
25	Diversity, physiology, and evolution of avian plumage carotenoids and the role of carotenoid–protein interactions in plumage color appearance. Archives of Biochemistry and Biophysics, 2015, 572, 201-212.	1.4	46
26	Nuclear β atenin localization supports homology of feathers, avian scutate scales, and alligator scales in early development. Evolution & Development, 2015, 17, 185-194.	1,1	31
27	Structural Diversity of Arthropod Biophotonic Nanostructures Spans Amphiphilic Phase-Space. Nano Letters, 2015, 15, 3735-3742.	4.5	80
28	Aeroelastic flutter of feathers, flight, and the evolution of nonvocal communication in birds. Journal of Experimental Biology, 2015, 218, 3520-7.	0.8	25
29	A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature, 2015, 526, 569-573.	13.7	1,341
30	The Role of Sexual Autonomy in Evolution by Mate Choice. History, Philosophy and Theory of the Life Sciences, 2015, , 237-262.	0.4	21
31	Interspecific social dominance mimicry in birds. Zoological Journal of the Linnean Society, 2014, 172, 910-941.	1.0	54
32	Theoretical morphology and development of flight feather vane asymmetry with experimental tests in parrots. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2014, 322, 240-255.	0.6	14
33	A comprehensive multilocus phylogeny of the Neotropical cotingas (Cotingidae, Aves) with a comparative evolutionary analysis of breeding system and plumage dimorphism and a revised phylogenetic classification. Molecular Phylogenetics and Evolution, 2014, 81, 120-136.	1.2	35
34	Mechanism of carotenoid coloration in the brightly colored plumages of broadbills (Eurylaimidae). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2014, 184, 651-672.	0.7	9
35	Carotenoids from the crimson and maroon plumages of Old World orioles (Oriolidae). Archives of Biochemistry and Biophysics, 2013, 539, 126-132.	1.4	18
36	Coevolutionary aesthetics in human and biotic artworlds. Biology and Philosophy, 2013, 28, 811-832.	0.7	30

#	Article	IF	Citations
37	Structural resonance and mode of flutter of hummingbird tail feathers. Journal of Experimental Biology, 2013, 216, 3404-13.	0.8	18
38	Vibrational and electronic spectroscopy of the retro-carotenoid rhodoxanthin in avian plumage, solid-state films, and solution. Archives of Biochemistry and Biophysics, 2013, 539, 142-155.	1.4	27
39	Nuclear magnetic resonance analysis of carotenoids from the burgundy plumage of the Pompadour Cotinga (Xipholena punicea). Archives of Biochemistry and Biophysics, 2013, 539, 133-141.	1.4	15
40	Fourier Blues: Structural Coloration of Biological Tissues. Applied and Numerical Harmonic Analysis, 2013, , 401-421.	0.1	9
41	How colorful are fruits? Limited color diversity in fleshy fruits on local and global scales. New Phytologist, 2013, 198, 617-629.	3.5	57
42	Exceptional three-dimensional preservation and coloration of an originally iridescent fossil feather from the Middle Eocene Messel Oil Shale. Palaontologische Zeitschrift, 2013, 87, 493-503.	0.8	20
43	Color Production by Isotropic Nanostructures with Short-range Order in Bird Feather Barbs. , 2013, , .		0
44	Visualization of color as birds see it., 2013,,.		0
45	Hummingbird feather sounds are produced by aeroelastic flutter, not vortex-induced vibration. Journal of Experimental Biology, 2013, 216, 3395-403.	0.8	20
46	Structure and optical function of amorphous photonic nanostructures from avian feather barbs: a comparative small angle X-ray scattering (SAXS) analysis of 230 bird species. Journal of the Royal Society Interface, 2012, 9, 2563-2580.	1.5	127
47	3D imaging spectroscopy for measuring hyperspectral patterns on solid objects. ACM Transactions on Graphics, 2012, 31, 1-11.	4.9	70
48	Molecular diversity, metabolic transformation, and evolution of carotenoid feather pigments in cotingas (Aves: Cotingidae). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2012, 182, 1095-1116.	0.7	44
49	The Hairy–Downy Game: A model of interspecific social dominance mimicry. Journal of Theoretical Biology, 2012, 313, 42-60.	0.8	27
50	The limits of sexual conflict in the narrow sense: new insights from waterfowl biology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2324-2338.	1.8	60
51	Variation in carotenoid–protein interaction in bird feathers produces novel plumage coloration. Journal of the Royal Society Interface, 2012, 9, 3338-3350.	1.5	51
52	Aesthetic evolution by mate choice: Darwin's <i>really</i> of the Royal Society B: Biological Sciences, 2012, 367, 2253-2265.	1.8	128
53	Aeroelastic Flutter Produces Hummingbird Feather Songs. Science, 2011, 333, 1430-1433.	6.0	63
54	How colorful are birds? Evolution of the avian plumage color gamut. Behavioral Ecology, 2011, 22, 1042-1052.	1.0	195

#	Article	IF	Citations
55	Short-range order and near-field effects on optical scattering and structural coloration. Optics Express, 2011, 19, 8208.	1.7	65
56	Colour-producing \hat{l}^2 -keratin nanofibres in blue penguin (<i>Eudyptula minor</i>) feathers. Biology Letters, 2011, 7, 543-546.	1.0	48
57	Biomimetic Isotropic Nanostructures for Structural Coloration. Advanced Materials, 2010, 22, 2939-2944.	11.1	345
58	How Noniridescent Colors Are Generated by Quasiâ€ordered Structures of Bird Feathers. Advanced Materials, 2010, 22, 2871-2880.	11.1	228
59	Structural Color: How Noniridescent Colors Are Generated by Quasi-ordered Structures of Bird Feathers (Adv. Mater. 26-27/2010). Advanced Materials, 2010, 22, n/a-n/a.	11.1	3
60	THE LANDE-KIRKPATRICK MECHANISM IS THE NULL MODEL OF EVOLUTION BY INTERSEXUAL SELECTION: IMPLICATIONS FOR MEANING, HONESTY, AND DESIGN IN INTERSEXUAL SIGNALS. Evolution; International Journal of Organic Evolution, 2010, 64, 3085-3100.	1.1	178
61	The evolution of black plumage from blue in Australian fairyâ€wrens (Maluridae): genetic and structural evidence. Journal of Avian Biology, 2010, 41, 505-514.	0.6	18
62	Moulting tail feathers in a juvenile oviraptorisaur. Nature, 2010, 468, E1-E1.	13.7	16
63	Contribution of double scattering to structural coloration in quasiordered nanostructures of bird feathers. Physical Review E, 2010, 81, 051923.	0.8	23
64	Structure, function, and self-assembly of single network gyroid ($\langle i \rangle \langle i \rangle 4 \langle sub \rangle 1 \langle sub \rangle 32$) photonic crystals in butterfly wing scales. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11676-11681.	3.3	428
65	Explosive eversion and functional morphology of the duck penis supports sexual conflict in waterfowl genitalia. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1309-1314.	1.2	102
66	Double scattering of light from Biophotonic Nanostructures with short-range order. Optics Express, 2010, 18, 11942.	1.7	39
67	Novel methoxy-carotenoids from the burgundy-colored plumage of the Pompadour Cotinga Xipholena punicea. Archives of Biochemistry and Biophysics, 2010, 504, 142-153.	1.4	26
68	Plumage Color Patterns of an Extinct Dinosaur. Science, 2010, 327, 1369-1372.	6.0	224
69	Structural coloration in a fossil feather. Biology Letters, 2010, 6, 128-131.	1.0	100
70	Double Scattering of Light from Biophotonic Nanostructures with Short-Range Order. , 2010, , .		0
71	Electron tomography, three-dimensional Fourier analysis and colour prediction of a three-dimensional amorphous biophotonic nanostructure. Journal of the Royal Society Interface, 2009, 6, S213-20.	1.5	46
72	Development of colour-producing \hat{l}^2 -keratin nanostructures in avian feather barbs. Journal of the Royal Society Interface, 2009, 6, S253-65.	1.5	103

#	Article	IF	Citations
73	Self-assembly of amorphous biophotonic nanostructures by phase separation. Soft Matter, 2009, 5, 1792.	1.2	222
74	Independent evolutionary reductions of the phallus in basal birds. Journal of Avian Biology, 2008, 39, 487-492.	0.6	32
75	Manakin display and visiting behaviour: a comparative test of sensory drive. Animal Behaviour, 2008, 75, 783-790.	0.8	26
76	The colour of fossil feathers. Biology Letters, 2008, 4, 522-525.	1.0	167
77	Evolution of Avian Plumage Color in a Tetrahedral Color Space: A Phylogenetic Analysis of New World Buntings. American Naturalist, 2008, 171, 755-776.	1.0	371
78	Who's Your Daddy?. Science, 2008, 322, 1799-1800.	6.0	14
79	Study of Angle Dependent Reflection From a 3D Quasi-Ordered Photonic Crystal. , 2008, , .		0
80	Coevolution of Male and Female Genital Morphology in Waterfowl. PLoS ONE, 2007, 2, e418.	1.1	166
81	A molecular phylogeny of the cotingas (Aves: Cotingidae). Molecular Phylogenetics and Evolution, 2007, 42, 25-37.	1.2	28
82	Genetic evidence supports song learning in the threeâ€wattled bellbird <i>Procnias tricarunculata</i> /i>(Cotingidae). Molecular Ecology, 2007, 16, 3689-3702.	2.0	77
83	Anatomically diverse butterfly scales all produce structural colours by coherent scattering. Journal of Experimental Biology, 2006, 209, 748-765.	0.8	192
84	Phylogeny and Evolutionary History of Old World Suboscine Birds (Aves: Eurylaimides). American Museum Novitates, 2006, 3544, 1.	0.2	48
85	Higher-level phylogeny and morphological evolution of tyrant flycatchers, cotingas, manakins, and their allies (Aves: Tyrannida). Molecular Phylogenetics and Evolution, 2006, 40, 471-483.	1.2	69
86	Anatomy, Physics, and Evolution of Structural Colors. , 2006, , 295-353.		82
87	Evolution of the morphological innovations of feathers. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2005, 304B, 570-579.	0.6	74
88	Molecular evidence for an activator-inhibitor mechanism in development of embryonic feather branching. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11734-11739.	3.3	144
89	Courting Bird Sings with Stridulating Wing Feathers. Science, 2005, 309, 736-736.	6.0	59
90	Blue integumentary structural colours in dragonflies (Odonata) are not produced by incoherent Tyndall scattering. Journal of Experimental Biology, 2004, 207, 3999-4009.	0.8	97

#	Article	IF	Citations
91	Structural colouration of mammalian skin: convergent evolution of coherently scattering dermal collagen arrays. Journal of Experimental Biology, 2004, 207, 2157-2172.	0.8	181
92	A hierarchical model of plumage: Morphology, development, and evolution. The Journal of Experimental Zoology, 2003, 298B, 73-90.	1.4	60
93	Which Came First, the Feather or the Bird?. Scientific American, 2003, 288, 84-93.	1.0	40
94	Dinosaurs take to the air. Nature, 2003, 421, 323-324.	13.7	30
95	ARE CURRENT CRITIQUES OF THE THEROPOD ORIGIN OF BIRDS SCIENCE? REBUTTAL TO FEDUCCIA (2002). Auk, 2003, 120, 550.	0.7	13
96	Structural colouration of avian skin: convergent evolution of coherently scattering dermal collagen arrays. Journal of Experimental Biology, 2003, 206, 2409-2429.	0.8	228
97	COHERENT SCATTERING OF ULTRAVIOLET LIGHT BY AVIAN FEATHER BARBS. Auk, 2003, 120, 163.	0.7	48
98	High-speed video analysis of wing-snapping in two manakin clades (Pipridae: Aves). Journal of Experimental Biology, 2003, 206, 3693-3706.	0.8	97
99	A Fourier Tool for the Analysis of Coherent Light Scattering by Bio-Optical Nanostructures. Integrative and Comparative Biology, 2003, 43, 591-602.	0.9	100
100	Coherent Scattering of Ultraviolet Light by Avian Feather Barbs. Auk, 2003, 120, 163-170.	0.7	4
101	Are Current Critiques of the Theropod Origin of Birds Science? Rebuttal to Feduccia (2002). Auk, 2003, 120, 550-561.	0.7	2
102	Coherent Scattering of Ultraviolet Light by Avian Feather Barbs. Auk, 2003, 120, 163-170.	0.7	2
103	Are Current Critiques of the Theropod Origin of Birds Science? Rebuttal to Feduccia (2002). Auk, 2003, 120, 550-561.	0.7	1
104	Reaction–diffusion models of within-feather pigmentation patterning. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 781-792.	1.2	76
105	Why Ornithologists Should Care About The Theropod Origin of Birds. Auk, 2002, 119, 1-17.	0.7	60
106	Shh-Bmp2 signaling module and the evolutionary origin and diversification of feathers. The Journal of Experimental Zoology, 2002, 294, 160-176.	1.4	132
107	The Evolutionary Origin And Diversification Of Feathers. Quarterly Review of Biology, 2002, 77, 261-295.	0.0	263
108	Why Ornithologists Should Care about the Theropod Origin of Birds. Auk, 2002, 119, 1-17.	0.7	4

#	Article	IF	CITATIONS
109	Theory of the growth and evolution of feather shape. The Journal of Experimental Zoology, 2001, 291, 30-57.	1.4	91
110	Branched integumental structures in Sinornithosaurus and the origin of feathers. Nature, 2001, 410, 200-204.	13.7	172
111	A new genus for the Andean Green Pihas (Cotingidae). Ibis, 2001, 143, 307-309.	1.0	7
112	Longisquama Fossil and Feather Morphology. Science, 2001, 291, 1899c-1902.	6.0	18
113	A Preliminary Phylogenetic Hypothesis for the Cotingas (Cotingidae) Based on Mitochondrial DNA. Auk, 2000, 117, 236-241.	0.7	29
114	Development and evolutionary origin of feathers. , 1999, 285, 291-306.		267
115	Two-dimensional Fourier analysis of the spongy medullary keratin of structurally coloured feather barbs. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 13-22.	1.2	157
116	Phylogenetic Analysis of the Nest Architecture of Neotropical Ovenbirds (Furnariidae). Auk, 1999, 116, 891-911.	0.7	167
117	Development and evolutionary origin of feathers. , 1999, 285, 291.		10
118	Sexual selection and the evolution of mechanical sound production in manakins (Aves: Pipridae). Animal Behaviour, 1998, 55, 977-994.	0.8	103
119	Coherent light scattering by blue feather barbs. Nature, 1998, 396, 28-29.	13.7	332
120	Phylogenetic Tests of Alternative Intersexual Selection Mechanisms: Trait Macroevolution in a Polygynous Clade (Aves: Pipridae). American Naturalist, 1997, 149, 668-692.	1.0	124
121	Display Behavior and Natural History of the Yellow-Crowned Manakin (Heterocercus flavivertex:) Tj ETQq1 1 0.78	4314 rgBT 0.7	Qyerlock 10
122	Phylogenetic Relationships of the Cinnamon Tyrant, Neopipo cinnamomea, to the Tyrant Flycatchers (Tyrannidae). Condor, 1995, 97, 650-662.	0.7	13
123	Structural color production by constructive reflection from ordered collagen arrays in a bird (Philepitta castanea: Eurylaimidae). Journal of Morphology, 1994, 222, 61-72.	0.6	36
124	Species Status of the White-Fronted Manakin, Lepidothrix serena (Pipridae), with Comments on Conservation Biology. Condor, 1994, 96, 692-702.	0.7	15
125	Phylogenetic Analysis of the Evolution of Alternative Social Behavior in the Manakins (Aves: Pipridae). Evolution; International Journal of Organic Evolution, 1994, 48, 1657.	1.1	48
	Conservation Biology. Condor, 1994, 96, 692-702. Phylogenetic Analysis of the Evolution of Alternative Social Behavior in the Manakins (Aves: Pipridae).		

PHYLOGENETIC ANALYSIS OF THE EVOLUTION OF ALTERNATIVE SOCIAL BEHAVIOR IN THE MANAKINS (AVES:) Tj ETQq0 0 0 rgbt /Overl

8

126

#	Article	IF	CITATIONS
127	Phylogenetic Analysis of the Evolution of Display Behavior in the Neotropical Manakins (Aves:) Tj ETQq1 1 0.7843	14.rgBT /C	Verlock 10
128	Monophyly and Phylogeny of the Schiffornis Group (Tyrannoidea). Condor, 1989, 91, 444.	0.7	51
129	Patterns and Processes of Diversification: Speciation and Historical Congruence in Some Neotropical Birds. Evolution; International Journal of Organic Evolution, 1988, 42, 603.	1.1	133
130	PATTERNS AND PROCESSES OF DIVERSIFICATION: SPECIATION AND HISTORICAL CONGRUENCE IN SOME NEOTROPICAL BIRDS. Evolution; International Journal of Organic Evolution, 1988, 42, 603-620.	1.1	276