Youhua Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4665244/publications.pdf Version: 2024-02-01

	9264	12272
19,050	74	133
citations	h-index	g-index
191	191	14689
docs citations	times ranked	citing authors
	citations 191	19,050 74 citations h-index 191 191

#	Article	IF	CITATIONS
1	CXCR4 induces podocyte injury and proteinuria by activating β-catenin signaling. Theranostics, 2022, 12, 767-781.	10.0	20
2	A Klotho-derived peptide protects against kidney fibrosis by targeting TGF-Î ² signaling. Nature Communications, 2022, 13, 438.	12.8	53
3	Ageing, cellular senescence and chronic kidney disease: experimental evidence. Current Opinion in Nephrology and Hypertension, 2022, 31, 235-243.	2.0	14
4	Matrix Metalloproteinase-10 in Kidney Injury Repair and Disease. International Journal of Molecular Sciences, 2022, 23, 2131.	4.1	5
5	βâ€cateninâ€controlled tubular cellâ€derived exosomes play a key role in fibroblast activation via the OPNâ€CD44 axis. Journal of Extracellular Vesicles, 2022, 11, e12203.	12.2	31
6	Non-canonical Wnt/calcium signaling is protective against podocyte injury and glomerulosclerosis. Kidney International, 2022, 102, 96-107.	5.2	7
7	High Fat Diet Induces Kidney Injury via Stimulating Wnt/β-Catenin Signaling. Frontiers in Medicine, 2022, 9, 851618.	2.6	7
8	Follistatin-like 1 (FSTL1) interacts with Wnt ligands and Frizzled receptors to enhance Wnt/β-catenin signaling in obstructed kidneys inÂvivo. Journal of Biological Chemistry, 2022, 298, 102010.	3.4	13
9	Klotho-derived peptide 6 ameliorates diabetic kidney disease by targeting Wnt/β-catenin signaling. Kidney International, 2022, 102, 506-520.	5.2	26
10	B7-1 mediates podocyte injury and glomerulosclerosis through communication with Hsp90ab1-LRP5-β-catenin pathway. Cell Death and Differentiation, 2022, 29, 2399-2416.	11.2	7
11	The fibrogenic niche in kidney fibrosis: components and mechanisms. Nature Reviews Nephrology, 2022, 18, 545-557.	9.6	89
12	Cannabinoid receptor type 2 promotes kidney fibrosis through orchestrating Î ² -catenin signaling. Kidney International, 2021, 99, 364-381.	5.2	32
13	Fibrillin-1–enriched microenvironment drives endothelial injury and vascular rarefaction in chronic kidney disease. Science Advances, 2021, 7, .	10.3	25
14	Matrix metalloproteinase-10 protects against acute kidney injury by augmenting epidermal growth factor receptor signaling. Cell Death and Disease, 2021, 12, 70.	6.3	10
15	LRP5 and LRP6 in Wnt Signaling: Similarity and Divergence. Frontiers in Cell and Developmental Biology, 2021, 9, 670960.	3.7	61
16	MicroRNA-10 negatively regulates inflammation in diabetic kidney via targeting activation of the NLRP3 inflammasome. Molecular Therapy, 2021, 29, 2308-2320.	8.2	35
17	Cannabinoid receptor 2 plays a central role in renal tubular mitochondrial dysfunction and kidney ageing. Journal of Cellular and Molecular Medicine, 2021, 25, 8957-8972.	3.6	14
18	The hepatocyte growth factor/c-met pathway is a key determinant of the fibrotic kidney local microenvironment. IScience, 2021, 24, 103112.	4.1	5

Үоиниа Liu

#	Article	IF	CITATIONS
19	Identification of matrix metalloproteinase-10 as a key mediator of podocyte injury and proteinuria. Kidney International, 2021, 100, 837-849.	5.2	15
20	Exogenous Wnt1 Prevents Acute Kidney Injury and Its Subsequent Progression to Chronic Kidney Disease. Frontiers in Physiology, 2021, 12, 745816.	2.8	3
21	Intensity of Macrophage Infiltration in Glomeruli Predicts Response to Immunosuppressive Therapy in Patients with IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2021, 32, 3187-3196.	6.1	28
22	Role of miRNA-671-5p in Mediating Wnt/β-Catenin-Triggered Podocyte Injury. Frontiers in Pharmacology, 2021, 12, 784489.	3.5	7
23	Urinary Matrix Metalloproteinase 7 and Prediction of IgA Nephropathy Progression. American Journal of Kidney Diseases, 2020, 75, 384-393.	1.9	29
24	Tubule-derived exosomes play a central role in fibroblast activation and kidney fibrosis. Kidney International, 2020, 97, 1181-1195.	5.2	82
25	Molecular basis of kidney disease. , 2020, , 425-440.		0
26	MicroRNAâ€466oâ€3p mediates βâ€cateninâ€induced podocyte injury by targeting Wilms tumor 1. FASEB Journ 2020, 34, 14424-14439.	al _{0.5}	8
27	Inhibition of Estrogen Sulfotransferase (SULT1E1/EST) Ameliorates Ischemic Acute Kidney Injury in Mice. Journal of the American Society of Nephrology: JASN, 2020, 31, 1496-1508.	6.1	12
28	Câ€Xâ€C motif chemokine receptor 4 aggravates renal fibrosis through activating JAK/STAT/GSK3β/β atenin pathway. Journal of Cellular and Molecular Medicine, 2020, 24, 3837-3855.	3.6	30
29	The Many Faces of Matrix Metalloproteinase-7 in Kidney Diseases. Biomolecules, 2020, 10, 960.	4.0	48
30	Sequential Wnt Agonist Then Antagonist Treatment Accelerates Tissue Repair and Minimizes Fibrosis. IScience, 2020, 23, 101047.	4.1	9
31	Sympathetic Overactivity in CKD Disrupts Buffering of Neurotransmission by Endothelium-Derived Hyperpolarizing Factor and Enhances Vasoconstriction. Journal of the American Society of Nephrology: JASN, 2020, 31, 2312-2325.	6.1	7
32	Tenascin-C promotes acute kidney injury to chronic kidney disease progression by impairing tubular integrity via αvβ6 integrin signaling. Kidney International, 2020, 97, 1017-1031.	5.2	41
33	Cellular Senescence in Kidney Fibrosis: Pathologic Significance and Therapeutic Strategies. Frontiers in Pharmacology, 2020, 11, 601325.	3.5	40
34	Myofibroblast in Kidney Fibrosis: Origin, Activation, and Regulation. Advances in Experimental Medicine and Biology, 2019, 1165, 253-283.	1.6	118
35	Sonic hedgehog selectively promotes lymphangiogenesis after kidney injury through noncanonical pathway. American Journal of Physiology - Renal Physiology, 2019, 317, F1022-F1033.	2.7	13
36	Wnt/β atenin/RAS signaling mediates ageâ€related renal fibrosis and is associated with mitochondrial dysfunction. Aging Cell, 2019, 18, e13004.	6.7	155

#	Article	IF	CITATIONS
37	Early activation of fibroblasts is required for kidney repair and regeneration after injury. FASEB Journal, 2019, 33, 12576-12587.	0.5	27
38	Adipocytes initiate an adipose-cerebral-peripheral sympathetic reflex to induce insulin resistance during high-fat feeding. Clinical Science, 2019, 133, 1883-1899.	4.3	15
39	Wnt/β-catenin regulates blood pressure and kidney injury in rats. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1313-1322.	3.8	29
40	A stimuli-responsive drug release nanoplatform for kidney-specific anti-fibrosis treatment. Biomaterials Science, 2019, 7, 1554-1564.	5.4	19
41	Matrix metalloproteinase-7 protects against acute kidney injury by priming renal tubules for survival and regeneration. Kidney International, 2019, 95, 1167-1180.	5.2	51
42	Wnt∫î²-catenin links oxidative stress to podocyte injury and proteinuria. Kidney International, 2019, 95, 830-845.	5.2	105
43	Wnt∫î²-catenin signaling mediates both heart and kidney injury in type 2 cardiorenal syndrome. Kidney International, 2019, 95, 815-829.	5.2	66
44	Tenascin-C protects against acute kidney injury by recruiting Wnt ligands. Kidney International, 2019, 95, 62-74.	5.2	34
45	Tubular injury triggers podocyte dysfunction by β-catenin–driven release of MMP-7. JCI Insight, 2019, 4, .	5.0	39
46	Sonic hedgehog connects podocyte injury to mesangial activation and glomerulosclerosis. JCI Insight, 2019, 4, .	5.0	14
47	A new model of diabetic nephropathy in C57BL/6 mice challenged with advanced oxidation protein products. Free Radical Biology and Medicine, 2018, 118, 71-84.	2.9	15
48	Wnt9a Promotes Renal Fibrosis by Accelerating Cellular Senescence in Tubular Epithelial Cells. Journal of the American Society of Nephrology: JASN, 2018, 29, 1238-1256.	6.1	163
49	Fibroblast-Specific β-Catenin Signaling Dictates the Outcome of AKI. Journal of the American Society of Nephrology: JASN, 2018, 29, 1257-1271.	6.1	55
50	Activation of Constitutive Androstane Receptor Ameliorates Renal Ischemia-Reperfusion–Induced Kidney and Liver Injury. Molecular Pharmacology, 2018, 93, 239-250.	2.3	14
51	A renal-cerebral-peripheral sympathetic reflex mediates insulin resistance in chronic kidney disease. EBioMedicine, 2018, 37, 281-293.	6.1	18
52	New insights into the role and mechanism of Wnt/β atenin signalling in kidney fibrosis. Nephrology, 2018, 23, 38-43.	1.6	69
53	Long noncoding RNA <i>lnc-TSI</i> inhibits renal fibrogenesis by negatively regulating the TGF-β/Smad3 pathway. Science Translational Medicine, 2018, 10, .	12.4	129
54	IL-17 Receptor Signaling Negatively Regulates the Development of Tubulointerstitial Fibrosis in the Kidney. Mediators of Inflammation, 2018, 2018, 1-14.	3.0	22

#	Article	IF	CITATIONS
55	Wnt Signaling in Kidney Development and Disease. Progress in Molecular Biology and Translational Science, 2018, 153, 181-207.	1.7	93
56	A New Criterion for Pediatric AKI Based on the Reference Change Value of Serum Creatinine. Journal of the American Society of Nephrology: JASN, 2018, 29, 2432-2442.	6.1	52
57	Targeted inhibition of the type 2 cannabinoid receptor is a novel approach to reduce renalÂfibrosis. Kidney International, 2018, 94, 756-772.	5.2	48
58	Molecular Basis of Kidney Disease. , 2018, , 531-553.		3
59	An essential role for Wnt/β-catenin signaling in mediating hypertensive heart disease. Scientific Reports, 2018, 8, 8996.	3.3	68
60	(Pro)renin Receptor Is an Amplifier of Wnt/β-Catenin Signaling in Kidney Injury and Fibrosis. Journal of the American Society of Nephrology: JASN, 2017, 28, 2393-2408.	6.1	86
61	Tubule-Derived Wnts Are Required for Fibroblast Activation and Kidney Fibrosis. Journal of the American Society of Nephrology: JASN, 2017, 28, 2322-2336.	6.1	95
62	Reno-Cerebral Reflex Activates the Renin-Angiotensin System, Promoting Oxidative Stress and Renal Damage After Ischemia-Reperfusion Injury. Antioxidants and Redox Signaling, 2017, 27, 415-432.	5.4	53
63	C-X-C Chemokine Receptor Type 4 Plays a Crucial Role in Mediating Oxidative Stress-Induced Podocyte Injury. Antioxidants and Redox Signaling, 2017, 27, 345-362.	5.4	37
64	Contrast-Enhanced Ultrasound for Assessing Renal Perfusion Impairment and Predicting Acute Kidney Injury to Chronic Kidney Disease Progression. Antioxidants and Redox Signaling, 2017, 27, 1397-1411.	5.4	40
65	Urinary Matrix Metalloproteinase-7 Predicts Severe AKI and Poor Outcomes after Cardiac Surgery. Journal of the American Society of Nephrology: JASN, 2017, 28, 3373-3382.	6.1	52
66	Tenascin-C Is a Major Component of the Fibrogenic Niche in Kidney Fibrosis. Journal of the American Society of Nephrology: JASN, 2017, 28, 785-801.	6.1	87
67	Matrix Metalloproteinase-7 Is a Urinary Biomarker and Pathogenic Mediator of Kidney Fibrosis. Journal of the American Society of Nephrology: JASN, 2017, 28, 598-611.	6.1	118
68	Numb contributes to renal fibrosis by promoting tubular epithelial cell cycle arrest at G2/M. Oncotarget, 2016, 7, 25604-25619.	1.8	21
69	Sonic hedgehog signaling in kidney fibrosis: a master communicator. Science China Life Sciences, 2016, 59, 920-929.	4.9	43
70	Keap1 hypomorphism protects against ischemic and obstructive kidney disease. Scientific Reports, 2016, 6, 36185.	3.3	32
71	Signaling Crosstalk between Tubular Epithelial Cells and Interstitial Fibroblasts after Kidney Injury. Kidney Diseases (Basel, Switzerland), 2016, 2, 136-144.	2.5	90
72	Wnt/β-catenin signaling and renin–angiotensin system in chronic kidney disease. Current Opinion in Nephrology and Hypertension, 2016, 25, 100-106.	2.0	61

Үоиниа Liu

#	Article	IF	CITATIONS
73	Therapy for kidney fibrosis: is the Src kinase a potential target?. Kidney International, 2016, 89, 12-14.	5.2	18
74	Understanding the mechanisms of kidney fibrosis. Nature Reviews Nephrology, 2016, 12, 68-70.	9.6	156
75	Wnt/β-catenin signaling in kidney injury and repair: a double-edged sword. Laboratory Investigation, 2016, 96, 156-167.	3.7	146
76	Sustained Activation of Wnt/β-Catenin Signaling Drives AKI to CKD Progression. Journal of the American Society of Nephrology: JASN, 2016, 27, 1727-1740.	6.1	189
77	Wnt/β-catenin signalling and podocyte dysfunction in proteinuric kidney disease. Nature Reviews Nephrology, 2015, 11, 535-545.	9.6	167
78	Klotho Ameliorates Kidney Injury and Fibrosis and Normalizes Blood Pressure by Targeting the Renin-Angiotensin System. American Journal of Pathology, 2015, 185, 3211-3223.	3.8	124
79	Extracellular Superoxide Dismutase Protects against Proteinuric Kidney Disease. Journal of the American Society of Nephrology: JASN, 2015, 26, 2447-2459.	6.1	54
80	Loss of Klotho in CKD Breaks One's Heart. Journal of the American Society of Nephrology: JASN, 2015, 26, 2305-2307.	6.1	11
81	Oestrogen sulfotransferase ablation sensitizes mice to sepsis. Nature Communications, 2015, 6, 7979.	12.8	33
82	Mutual Antagonism of Wilms' Tumor 1 and β-Catenin Dictates Podocyte Health and Disease. Journal of the American Society of Nephrology: JASN, 2015, 26, 677-691.	6.1	55
83	Multiple Genes of the Renin-Angiotensin System Are Novel Targets of Wnt/β-Catenin Signaling. Journal of the American Society of Nephrology: JASN, 2015, 26, 107-120.	6.1	184
84	Wnt/β-catenin signaling and kidney fibrosis. Kidney International Supplements, 2014, 4, 84-90.	14.2	221
85	Renal expression of advanced oxidative protein products predicts progression of renal fibrosis in patients with IgA nephropathy. Laboratory Investigation, 2014, 94, 966-977.	3.7	13
86	New insights into the pathogenesis and therapeutics of kidney fibrosis. Kidney International Supplements, 2014, 4, 1.	14.2	8
87	Klotho suppresses renal tubuloâ€interstitial fibrosis by controlling basic fibroblast growth factorâ€⊋ signalling. Journal of Pathology, 2014, 234, 560-572.	4.5	77
88	Arrestin(g) Podocyte Injury with Endothelin Antagonism. Journal of the American Society of Nephrology: JASN, 2014, 25, 423-425.	6.1	4
89	RANK- and c-Met-mediated signal network promotes prostate cancer metastatic colonization. Endocrine-Related Cancer, 2014, 21, 311-326.	3.1	74
90	Complement Component C5a Permits the Coexistence of Pathogenic Th17 Cells and Type I IFN in Lupus. Journal of Immunology, 2014, 193, 3288-3295.	0.8	21

#	Article	IF	CITATIONS
91	Sonic Hedgehog Is a Novel Tubule-Derived Growth Factor for Interstitial Fibroblasts after Kidney Injury. Journal of the American Society of Nephrology: JASN, 2014, 25, 2187-2200.	6.1	116
92	Loss of Klotho Contributes to Kidney Injury by Derepression of Wnt/β-Catenin Signaling. Journal of the American Society of Nephrology: JASN, 2013, 24, 771-785.	6.1	309
93	Activation of hepatocyte growth factor receptor, c-met, in renal tubules is required for renoprotection after acute kidney injury. Kidney International, 2013, 84, 509-520.	5.2	108
94	Kindlin-2 Mediates Activation of TGF-β/Smad Signaling and Renal Fibrosis. Journal of the American Society of Nephrology: JASN, 2013, 24, 1387-1398.	6.1	83
95	Macrophage-derived TGF-β in renal fibrosis: not a macro-impact after all. American Journal of Physiology - Renal Physiology, 2013, 305, F821-F822.	2.7	7
96	Fibrosis and anaemia in CKD—two beasts, one ancestor. Nature Reviews Nephrology, 2013, 9, 563-565.	9.6	5
97	Kidney tubular β-catenin signaling controls interstitial fibroblast fate via epithelial-mesenchymal communication. Scientific Reports, 2013, 3, 1878.	3.3	64
98	Endothelin Receptor A Blockade Is an Ineffective Treatment for Adriamycin Nephropathy. PLoS ONE, 2013, 8, e79963.	2.5	13
99	AGE-LDL Activates Toll Like Receptor 4 Pathway and Promotes Inflammatory Cytokines Production in Renal Tubular Epithelial Cells. International Journal of Biological Sciences, 2013, 9, 94-107.	6.4	36
100	Sonic Hedgehog Signaling Mediates Epithelial–Mesenchymal Communication and Promotes Renal Fibrosis. Journal of the American Society of Nephrology: JASN, 2012, 23, 801-813.	6.1	166
101	MiR-382 targeting of kallikrein 5 contributes to renal inner medullary interstitial fibrosis. Physiological Genomics, 2012, 44, 259-267.	2.3	71
102	Tubule-specific ablation of endogenous β-catenin aggravates acute kidney injury in mice. Kidney International, 2012, 82, 537-547.	5.2	181
103	The receptor of advanced glycation end products plays a central role in advanced oxidation protein products-induced podocyte apoptosis. Kidney International, 2012, 82, 759-770.	5.2	104
104	Matrix Metalloproteinase-7 as a Surrogate Marker Predicts Renal Wnt/β-Catenin Activity in CKD. Journal of the American Society of Nephrology: JASN, 2012, 23, 294-304.	6.1	131
105	Matrix metalloproteinases in kidney homeostasis and diseases. American Journal of Physiology - Renal Physiology, 2012, 302, F1351-F1361.	2.7	204
106	Loss of vitamin D receptor in chronic kidney disease: a potential mechanism linking inflammation to epithelial-to-mesenchymal transition. American Journal of Physiology - Renal Physiology, 2012, 303, F1107-F1115.	2.7	50
107	Tubular cell dedifferentiation and peritubular inflammation are coupled by the transcription regulator Id1 in renal fibrogenesis. Kidney International, 2012, 81, 880-891.	5.2	24
108	Cellular and molecular mechanisms of renal fibrosis. Nature Reviews Nephrology, 2011, 7, 684-696.	9.6	1,067

#	Article	IF	CITATIONS
109	PINCH1 Is Transcriptional Regulator in Podocytes That Interacts with WT1 and Represses Podocalyxin Expression. PLoS ONE, 2011, 6, e17048.	2.5	20
110	Blockade of Wnt/β-Catenin Signaling by Paricalcitol Ameliorates Proteinuria and Kidney Injury. Journal of the American Society of Nephrology: JASN, 2011, 22, 90-103.	6.1	242
111	Targeted Inhibition of β-Catenin/CBP Signaling Ameliorates Renal Interstitial Fibrosis. Journal of the American Society of Nephrology: JASN, 2011, 22, 1642-1653.	6.1	210
112	Albumin overload activates intrarenal renin–angiotensin system through protein kinase C and NADPH oxidase-dependent pathway. Journal of Hypertension, 2011, 29, 1411-1421.	0.5	54
113	Inhibition of Proinflammatory RANTES Expression by TGF-β1 Is Mediated by Glycogen Synthase Kinase-3β-dependent β-Catenin Signaling. Journal of Biological Chemistry, 2011, 286, 7052-7059.	3.4	28
114	Canonical Wnt/β-catenin signaling mediates transforming growth factor-β1-driven podocyte injury and proteinuria. Kidney International, 2011, 80, 1159-1169.	5.2	131
115	Plasminogen Activator Inhibitor-1 Is a Transcriptional Target of the Canonical Pathway of Wnt/β-Catenin Signaling. Journal of Biological Chemistry, 2010, 285, 24665-24675.	3.4	97
116	New Insights into Epithelial-Mesenchymal Transition in Kidney Fibrosis. Journal of the American Society of Nephrology: JASN, 2010, 21, 212-222.	6.1	753
117	Opposite Action of Peroxisome Proliferator-activated Receptor-Î ³ in Regulating Renal Inflammation. Journal of Biological Chemistry, 2010, 285, 29981-29988.	3.4	27
118	Hepatocyte growth factor signaling ameliorates podocyte injury and proteinuria. Kidney International, 2010, 77, 962-973.	5.2	87
119	Inhibition of integrin-linked kinase blocks podocyte epithelial–mesenchymal transition and ameliorates proteinuria. Kidney International, 2010, 78, 363-373.	5.2	134
120	tPA Is a Potent Mitogen for Renal Interstitial Fibroblasts. American Journal of Pathology, 2010, 177, 1164-1175.	3.8	22
121	Wnt/β-Catenin Signaling Promotes Renal Interstitial Fibrosis. Journal of the American Society of Nephrology: JASN, 2009, 20, 765-776.	6.1	510
122	Inhibition of Integrin-Linked Kinase Attenuates Renal Interstitial Fibrosis. Journal of the American Society of Nephrology: JASN, 2009, 20, 1907-1918.	6.1	108
123	Advanced oxidation protein products: a causative link between oxidative stress and podocyte depletion. Kidney International, 2009, 76, 1125-1127.	5.2	18
124	Wnt/β-Catenin Signaling Promotes Podocyte Dysfunction and Albuminuria. Journal of the American Society of Nephrology: JASN, 2009, 20, 1997-2008.	6.1	356
125	Combination therapy with paricalcitol and trandolapril reduces renal fibrosis in obstructive nephropathy. Kidney International, 2009, 76, 1248-1257.	5.2	65
126	A role of Wnt/beta atenin signaling in the pathogenesis of renal interstitial fibrosis. FASEB Journal, 2009, 23, 359.3.	0.5	0

#	Article	IF	CITATIONS
127	Epithelial-to-Mesenchymal Transition Is a Potential Pathway Leading to Podocyte Dysfunction and Proteinuria. American Journal of Pathology, 2008, 172, 299-308.	3.8	300
128	Hepatocyte Growth Factor Exerts Its Anti-Inflammatory Action by Disrupting Nuclear Factor-κB Signaling. American Journal of Pathology, 2008, 173, 30-41.	3.8	111
129	tPA Protects Renal Interstitial Fibroblasts and Myofibroblasts from Apoptosis. Journal of the American Society of Nephrology: JASN, 2008, 19, 503-514.	6.1	64
130	Smad ubiquitination regulatory factor-2 in the fibrotic kidney: regulation, target specificity, and functional implication. American Journal of Physiology - Renal Physiology, 2008, 294, F1076-F1083.	2.7	68
131	Paricalcitol Inhibits Renal Inflammation by Promoting Vitamin D Receptor–Mediated Sequestration of NF-κB Signaling. Journal of the American Society of Nephrology: JASN, 2008, 19, 1741-1752.	6.1	238
132	Animal Models of Kidney Diseases. , 2008, , 657-664.		7
133	Novel actions of tissue-type plasminogen activator in chronic kidney disease. Frontiers in Bioscience - Landmark, 2008, Volume, 5174.	3.0	35
134	Role of Bcl-xL induction in HGF-mediated renal epithelial cell survival after oxidant stress. International Journal of Clinical and Experimental Pathology, 2008, 1, 242-53.	0.5	19
135	Cell Phenotype-specific Down-regulation of Smad3 Involves Decreased Gene Activation as Well as Protein Degradation. Journal of Biological Chemistry, 2007, 282, 15534-15540.	3.4	43
136	Molecular Basis for the Cell Type–Specific Induction of SnoN Expression by Hepatocyte Growth Factor. Journal of the American Society of Nephrology: JASN, 2007, 18, 2340-2349.	6.1	31
137	Tubular Epithelial Cell Dedifferentiation Is Driven by the Helix-Loop-Helix Transcriptional Inhibitor Id1. Journal of the American Society of Nephrology: JASN, 2007, 18, 449-460.	6.1	80
138	PINCH-1 Promotes Tubular Epithelial-to-Mesenchymal Transition by Interacting with Integrin-Linked Kinase. Journal of the American Society of Nephrology: JASN, 2007, 18, 2534-2543.	6.1	58
139	Therapeutic role and potential mechanisms of active Vitamin D in renal interstitial fibrosis. Journal of Steroid Biochemistry and Molecular Biology, 2007, 103, 491-496.	2.5	62
140	Tissue-type plasminogen activator promotes murine myofibroblast activation through LDL receptor–related protein 1–mediated integrin signaling. Journal of Clinical Investigation, 2007, 117, 3821-32.	8.2	91
141	Hepatocyte Growth Factor Attenuates Liver Fibrosis Induced by Bile Duct Ligation. American Journal of Pathology, 2006, 168, 1500-1512.	3.8	186
142	Renal fibrosis: New insights into the pathogenesis and therapeutics. Kidney International, 2006, 69, 213-217.	5.2	909
143	Rapamycin and chronic kidney disease: beyond the inhibition of inflammation. Kidney International, 2006, 69, 1925-1927.	5.2	23
144	Hepatocyte growth factor: New arsenal in the fights against renal fibrosis?. Kidney International, 2006, 70, 238-240.	5.2	59

#	Article	IF	CITATIONS
145	Potential role of active vitamin D in retarding the progression of chronic kidney disease. Nephrology Dialysis Transplantation, 2006, 22, 321-328.	0.7	60
146	Distinctive role of Stat3 and Erk-1/2 activation in mediating interferon-γ inhibition of TGF-β1 action. American Journal of Physiology - Renal Physiology, 2006, 290, F1234-F1240.	2.7	17
147	Downregulation of SnoN Expression in Obstructive Nephropathy Is Mediated by an Enhanced Ubiquitin-Dependent Degradation. Journal of the American Society of Nephrology: JASN, 2006, 17, 2781-2791.	6.1	63
148	Tissue-type Plasminogen Activator Acts as a Cytokine That Triggers Intracellular Signal Transduction and Induces Matrix Metalloproteinase-9 Gene Expression. Journal of Biological Chemistry, 2006, 281, 2120-2127.	3.4	177
149	Essential Role of Integrin-Linked Kinase in Podocyte Biology. Journal of the American Society of Nephrology: JASN, 2006, 17, 2164-2175.	6.1	123
150	Paricalcitol Attenuates Renal Interstitial Fibrosis in Obstructive Nephropathy. Journal of the American Society of Nephrology: JASN, 2006, 17, 3382-3393.	6.1	250
151	Hepatocyte Growth Factor Is a Downstream Effector that Mediates the Antifibrotic Action of Peroxisome Proliferator–Activated Receptor-γ Agonists. Journal of the American Society of Nephrology: JASN, 2006, 17, 54-65.	6.1	129
152	β atenin: A Principal Inâ€Vivo Mediator of HGFâ€induced Liver Growth. FASEB Journal, 2006, 20, A1079.	0.5	0
153	1,25-dihydroxyvitamin D3 inhibits renal interstitial myofibroblast activation by inducing hepatocyte growth factor expression. Kidney International, 2005, 68, 1500-1510.	5.2	87
154	Both Sp1 and Smad participate in mediating TGF-β1-induced HGF receptor expression in renal epithelial cells. American Journal of Physiology - Renal Physiology, 2005, 288, F16-F26.	2.7	52
155	A Novel Mechanism by which Hepatocyte Growth Factor Blocks Tubular Epithelial to Mesenchymal Transition. Journal of the American Society of Nephrology: JASN, 2005, 16, 68-78.	6.1	169
156	Hepatocyte Growth Factor Receptor Signaling Mediates the Anti-Fibrotic Action of 9-cis-Retinoic Acid in Glomerular Mesangial Cells. American Journal of Pathology, 2005, 167, 947-957.	3.8	42
157	β-Cell-Specific Ablation of the Hepatocyte Growth Factor Receptor Results in Reduced Islet Size, Impaired Insulin Secretion, and Glucose Intolerance. American Journal of Pathology, 2005, 167, 429-436.	3.8	70
158	Epithelial to Mesenchymal Transition in Renal Fibrogenesis. Journal of the American Society of Nephrology: JASN, 2004, 15, 1-12.	6.1	1,005
159	Hepatocyte Growth Factor Antagonizes the Profibrotic Action of TGF-β1 in Mesangial Cells by Stabilizing Smad Transcriptional Corepressor TGIF. Journal of the American Society of Nephrology: JASN, 2004, 15, 1402-1412.	6.1	134
160	Intravenous Administration of Hepatocyte Growth Factor Gene Ameliorates Diabetic Nephropathy in Mice. Journal of the American Society of Nephrology: JASN, 2004, 15, 2637-2647.	6.1	108
161	Hepatocyte growth factor in kidney fibrosis: therapeutic potential and mechanisms of action. American Journal of Physiology - Renal Physiology, 2004, 287, F7-F16.	2.7	234
162	Hepatocyte Growth Factor Suppresses Renal Interstitial Myofibroblast Activation and Intercepts Smad Signal Transduction. American Journal of Pathology, 2003, 163, 621-632.	3.8	142

Үоиниа Liu

#	Article	IF	CITATIONS
163	Transforming Growth Factor-ॆ1 Potentiates Renal Tubular Epithelial Cell Death by a Mechanism Independent of Smad Signaling. Journal of Biological Chemistry, 2003, 278, 12537-12545.	3.4	135
164	Downregulation of Smad Transcriptional Corepressors SnoN and Ski in the Fibrotic Kidney. Journal of the American Society of Nephrology: JASN, 2003, 14, 3167-3177.	6.1	85
165	Urokinase Receptor Deficiency Accelerates Renal Fibrosis in Obstructive Nephropathy. Journal of the American Society of Nephrology: JASN, 2003, 14, 1254-1271.	6.1	111
166	Hepatocyte Growth Factor Preserves Beta Cell Mass and Mitigates Hyperglycemia in Streptozotocin-induced Diabetic Mice. Journal of Biological Chemistry, 2003, 278, 27080-27087.	3.4	74
167	Suppression of HGF receptor gene expression by oxidative stress is mediated through the interplay between Sp1 and Egr-1. American Journal of Physiology - Renal Physiology, 2003, 284, F1216-F1225.	2.7	44
168	Sp1 and Sp3 transcription factors synergistically regulate HGF receptor gene expression in kidney. American Journal of Physiology - Renal Physiology, 2003, 284, F82-F94.	2.7	64
169	Delayed administration of hepatocyte growth factor reduces renal fibrosis in obstructive nephropathy. American Journal of Physiology - Renal Physiology, 2003, 284, F349-F357.	2.7	77
170	Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. Journal of Clinical Investigation, 2003, 112, 503-516.	8.2	155
171	Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. Journal of Clinical Investigation, 2003, 112, 503-516.	8.2	314
172	Hepatocyte Growth Factor Gene Therapy and Angiotensin II Blockade Synergistically Attenuate Renal Interstitial Fibrosis in Mice. Journal of the American Society of Nephrology: JASN, 2002, 13, 2464-2477.	6.1	145
173	Hepatocyte growth factor and the kidney. Current Opinion in Nephrology and Hypertension, 2002, 11, 23-30.	2.0	108
174	Disruption of tissue-type plasminogen activator gene in mice reduces renal interstitial fibrosis in obstructive nephropathy. Journal of Clinical Investigation, 2002, 110, 1525-1538.	8.2	180
175	Disruption of tissue-type plasminogen activator gene in mice reduces renal interstitial fibrosis in obstructive nephropathy. Journal of Clinical Investigation, 2002, 110, 1525-1538.	8.2	137
176	Blockage of Tubular Epithelial to Myofibroblast Transition by Hepatocyte Growth Factor Prevents Renal Interstitial Fibrosis. Journal of the American Society of Nephrology: JASN, 2002, 13, 96-107.	6.1	295
177	Single Injection of Naked Plasmid Encoding Hepatocyte Growth Factor Prevents Cell Death and Ameliorates Acute Renal Failure in Mice. Journal of the American Society of Nephrology: JASN, 2002, 13, 411-422.	6.1	107
178	Dissection of Key Events in Tubular Epithelial to Myofibroblast Transition and Its Implications in Renal Interstitial Fibrosis. American Journal of Pathology, 2001, 159, 1465-1475.	3.8	773
179	Sustained expression of naked plasmid DNA encoding hepatocyte growth factor in mice promotes liver and overall body growth. Hepatology, 2001, 33, 848-859.	7.3	92
180	Endogenous hepatocyte growth factor ameliorates chronic renal injury by activating matrix degradation pathways. Kidney International, 2000, 58, 2028-2043.	5.2	124

#	Article	IF	CITATIONS
181	Hepatocyte growth factor promotes renal epithelial cell survival by dual mechanisms. American Journal of Physiology - Renal Physiology, 1999, 277, F624-F633.	2.7	70
182	Up-regulation of hepatocyte growth factor receptor: An amplification and targeting mechanism for hepatocyte growth factor action in acute renal failure. Kidney International, 1999, 55, 442-453.	5.2	113
183	The human hepatocyte growth factor receptor gene: complete structural organization and promoter characterization. Gene, 1998, 215, 159-169.	2.2	90
184	Hepatocyte Growth Factor Protects Renal Epithelial Cells from Apoptotic Cell Death. Biochemical and Biophysical Research Communications, 1998, 246, 821-826.	2.1	85
185	Constitutive Expression of HGF Modulates Renal Epithelial Cell Phenotype and Induces c-met and Fibronectin Expression. Experimental Cell Research, 1998, 242, 174-185.	2.6	35
186	The Upstream Regulatory Regions of the Hepatocyte Growth Factor Gene Promoter Are Essential for Its Expression in Transgenic Mice. Journal of Biological Chemistry, 1998, 273, 6900-6908.	3.4	16
187	Modulation of hepatocyte growth factor gene expression by estrogen in mouse ovary. Molecular and Cellular Endocrinology, 1994, 104, 173-181.	3.2	67