
## Carlos Alonso-Blanco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4664159/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | 1,135 Genomes Reveal the Global Pattern of Polymorphism in Arabidopsis thaliana. Cell, 2016, 166, 481-491.                                                                                                                | 28.9 | 1,107     |
| 2  | Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nature Genetics, 2011, 43, 956-963.                                                                                                                 | 21.4 | 910       |
| 3  | NATURALLY OCCURRING GENETIC VARIATION INARABIDOPSIS THALIANA. Annual Review of Plant Biology, 2004, 55, 141-172.                                                                                                          | 18.7 | 610       |
| 4  | Epigenomic Diversity in a Global Collection of Arabidopsis thaliana Accessions. Cell, 2016, 166, 492-505.                                                                                                                 | 28.9 | 594       |
| 5  | The Late Flowering Phenotype of fwa Mutants Is Caused by Gain-of-Function Epigenetic Alleles of a<br>Homeodomain Gene. Molecular Cell, 2000, 6, 791-802.                                                                  | 9.7  | 545       |
| 6  | GENETIC CONTROL OF FLOWERING TIME IN ARABIDOPSIS. Annual Review of Plant Biology, 1998, 49, 345-370.                                                                                                                      | 14.3 | 445       |
| 7  | What Has Natural Variation Taught Us about Plant Development, Physiology, and Adaptation?. Plant<br>Cell, 2009, 21, 1877-1896.                                                                                            | 6.6  | 401       |
| 8  | Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends<br>in Plant Science, 2000, 5, 22-29.                                                                                  | 8.8  | 398       |
| 9  | A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nature Genetics, 2001, 29, 435-440.                                                                                                               | 21.4 | 387       |
| 10 | Analysis of Natural Allelic Variation at Seed Dormancy Loci of <i>Arabidopsis thaliana</i> . Genetics, 2003, 164, 711-729.                                                                                                | 2.9  | 359       |
| 11 | Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. Plant Journal, 1998, 14, 259-271.                            | 5.7  | 355       |
| 12 | Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nature Genetics, 2004, 36, 162-166.                                                                                                             | 21.4 | 347       |
| 13 | PEP1 regulates perennial flowering in Arabis alpina. Nature, 2009, 459, 423-427.                                                                                                                                          | 27.8 | 325       |
| 14 | Cytogenetics for the model system <i>Arabidopsis thaliana</i> . Plant Journal, 1998, 13, 867-876.                                                                                                                         | 5.7  | 304       |
| 15 | ERECTA receptor-like kinase and heterotrimeric G protein from Arabidopsis are required for resistance to the necrotrophic fungus Plectosphaerella cucumerina. Plant Journal, 2005, 43, 165-180.                           | 5.7  | 303       |
| 16 | Site and plant species are important determinants of the <i>Methylobacterium</i> community composition in the plant phyllosphere. ISME Journal, 2010, 4, 719-728.                                                         | 9.8  | 297       |
| 17 | Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis<br>thaliana. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96,<br>4710-4717. | 7.1  | 257       |
| 18 | Highâ€resolution physical mapping in <i>Arabidopsis thaliana</i> and tomato by fluorescence <i>in situ</i> hybridization to extended DNA fibres. Plant Journal, 1996, 9, 421-430.                                         | 5.7  | 229       |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Analysis of Natural Allelic Variation at Flowering Time Loci in the Landsberg erecta and Cape Verde<br>Islands Ecotypes of Arabidopsis thaliana. Genetics, 1998, 149, 749-764.                                           | 2.9  | 225       |
| 20 | Development of a Near-Isogenic Line Population of Arabidopsis thaliana and Comparison of Mapping<br>Power With a Recombinant Inbred Line Population. Genetics, 2007, 175, 891-905.                                       | 2.9  | 214       |
| 21 | Genetic Analysis of Seed-Soluble Oligosaccharides in Relation to Seed Storability of Arabidopsis. Plant<br>Physiology, 2000, 124, 1595-1604.                                                                             | 4.8  | 205       |
| 22 | Natural variation for seed dormancy in Arabidopsis is regulated by additive genetic and molecular<br>pathways. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107,<br>4264-4269. | 7.1  | 194       |
| 23 | Natural allelic variation identifies new genes in the Arabidopsis circadian system. Plant Journal, 1999, 20, 67-77.                                                                                                      | 5.7  | 171       |
| 24 | Altitudinal and Climatic Adaptation Is Mediated by Flowering Traits and <i>FRI</i> , <i>FLC</i> ,<br>and <i>PHYC</i> Genes in Arabidopsis Â. Plant Physiology, 2011, 157, 1942-1955.                                     | 4.8  | 171       |
| 25 | Root microbiota assembly and adaptive differentiation among European Arabidopsis populations.<br>Nature Ecology and Evolution, 2020, 4, 122-131.                                                                         | 7.8  | 157       |
| 26 | Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation. Nature Plants, 2015, 1, 14023.                                                                                   | 9.3  | 156       |
| 27 | Environmental regulation of flowering. International Journal of Developmental Biology, 2005, 49, 689-705.                                                                                                                | 0.6  | 149       |
| 28 | Genetic and Molecular Analyses of Natural Variation Indicate CBF2 as a Candidate Gene for Underlying<br>a Freezing Tolerance Quantitative Trait Locus in Arabidopsis. Plant Physiology, 2005, 139, 1304-1312.            | 4.8  | 149       |
| 29 | African genomes illuminate the early history and transition to selfing in <i>Arabidopsis thaliana</i> .<br>Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5213-5218.        | 7.1  | 142       |
| 30 | QTL analysis of seed dormancy in Arabidopsis using recombinant inbred lines and MQM mapping.<br>Heredity, 1997, 79, 190-200.                                                                                             | 2.6  | 139       |
| 31 | Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana.<br>Nature Communications, 2014, 5, 4617.                                                                               | 12.8 | 136       |
| 32 | Natural Genetic Variation of <i>Arabidopsis thaliana</i> Is Geographically Structured in the Iberian<br>Peninsula. Genetics, 2008, 180, 1009-1021.                                                                       | 2.9  | 116       |
| 33 | Gene function beyond the single trait: natural variation, gene effects, and evolutionary ecology in<br>Arabidopsis thaliana. Plant, Cell and Environment, 2005, 28, 2-20.                                                | 5.7  | 103       |
| 34 | GENETIC BASIS OF ADAPTATION IN ARABIDOPSIS THALIANA: LOCAL ADAPTATION AT THE SEED DORMANCY QTL DOG1. Evolution; International Journal of Organic Evolution, 2012, 66, 2287-2302.                                         | 2.3  | 103       |
| 35 | <i>Arabidopsis thaliana</i> as a model for the study of plant–virus co-evolution. Philosophical<br>Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1983-1995.                                       | 4.0  | 92        |
| 36 | Altitudinal and climatic associations of seed dormancy and flowering traits evidence adaptation of annual life cycle timing in <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2016, 39, 1737-1748.           | 5.7  | 90        |

| #  | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | On the post-glacial spread of human commensal Arabidopsis thaliana. Nature Communications, 2017, 8,<br>14458.                                                                                                                                                | 12.8 | 83        |
| 38 | <i>Arabidopsis</i> semidwarfs evolved from independent mutations in <i>GA20ox1</i> , ortholog to green revolution dwarf alleles in rice and barley. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15818-15823. | 7.1  | 79        |
| 39 | From phenotypic to molecular polymorphisms involved in naturally occurring variation of plant development. International Journal of Developmental Biology, 2005, 49, 717-732.                                                                                | 0.6  | 78        |
| 40 | Demographic and Genetic Patterns of Variation among Populations of Arabidopsis thaliana from<br>Contrasting Native Environments. PLoS ONE, 2009, 4, e7213.                                                                                                   | 2.5  | 77        |
| 41 | The Role of Cryptochrome 2 in Flowering in Arabidopsis. Plant Physiology, 2003, 133, 1504-1516.                                                                                                                                                              | 4.8  | 71        |
| 42 | The Relationship of Within-Host Multiplication and Virulence in a Plant-Virus System. PLoS ONE, 2007, 2, e786.                                                                                                                                               | 2.5  | 69        |
| 43 | Host Responses in Life-History Traits and Tolerance to Virus Infection in Arabidopsis thaliana. PLoS<br>Pathogens, 2008, 4, e1000124.                                                                                                                        | 4.7  | 68        |
| 44 | Genetic architecture of naturally occurring quantitative traits in plants: an updated synthesis.<br>Current Opinion in Plant Biology, 2014, 18, 37-43.                                                                                                       | 7.1  | 68        |
| 45 | Natural Arabidopsis brx Loss-of-Function Alleles Confer Root Adaptation to Acidic Soil. Current<br>Biology, 2012, 22, 1962-1968.                                                                                                                             | 3.9  | 66        |
| 46 | Genetic approaches in plant physiology. New Phytologist, 1997, 137, 1-8.                                                                                                                                                                                     | 7.3  | 65        |
| 47 | Tackling intraspecific genetic structure in distribution models better reflects species geographical range. Ecology and Evolution, 2016, 6, 2084-2097.                                                                                                       | 1.9  | 59        |
| 48 | Natural variation in stomatal abundance of Arabidopsis thaliana includes cryptic diversity for different developmental processes. Annals of Botany, 2011, 107, 1247-1258.                                                                                    | 2.9  | 58        |
| 49 | The Flowering Repressor SVP Underlies a Novel Arabidopsis thaliana QTL Interacting with the Genetic<br>Background. PLoS Genetics, 2013, 9, e1003289.                                                                                                         | 3.5  | 58        |
| 50 | A high-density collection of EMS-induced mutations for TILLING in Landsberg erecta genetic background of Arabidopsis. BMC Plant Biology, 2009, 9, 147.                                                                                                       | 3.6  | 57        |
| 51 | Deciphering the Adjustment between Environment and Life History in Annuals: Lessons from a<br>Geographically-Explicit Approach in Arabidopsis thaliana. PLoS ONE, 2014, 9, e87836.                                                                           | 2.5  | 57        |
| 52 | Temporal analysis of natural variation for the rate of leaf production and its relationship with flowering initiation in Arabidopsis thaliana. Journal of Experimental Botany, 2010, 61, 1611-1623.                                                          | 4.8  | 56        |
| 53 | Among―and withinâ€population variation in flowering time of Iberian Arabidopsis thaliana estimated in<br>field and glasshouse conditions. New Phytologist, 2013, 197, 1332-1343.                                                                             | 7.3  | 56        |
| 54 | The genetic structure of Arabidopsis thaliana in the south-western Mediterranean range reveals a<br>shared history between North Africa and southern Europe. BMC Plant Biology, 2014, 14, 17.                                                                | 3.6  | 53        |

| #  | Article                                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | <scp>FE</scp> , a phloemâ€specific Mybâ€related protein, promotes flowering through transcriptional<br>activation of <i><scp>FLOWERING LOCUS</scp> T</i> and <i><scp>FLOWERING LOCUS</scp> T<br/><scp>INTERACTING PROTEIN</scp> 1</i> . Plant Journal, 2015, 83, 1059-1068. | 5.7  | 53        |
| 56 | Genomeâ€wide signatures of flowering adaptation to climate temperature: Regional analyses in a highly<br>diverse native range of <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2018, 41, 1806-1820.                                                            | 5.7  | 49        |
| 57 | Temporal variation in genetic diversity and effective population size of Mediterranean and subalpine<br>Arabidopsis thaliana populations. Molecular Ecology, 2011, 20, no-no.                                                                                               | 3.9  | 47        |
| 58 | The Cape Verde Islands Allele of Cryptochrome 2 Enhances Cotyledon Unfolding in the Absence of<br>Blue Light in Arabidopsis Â. Plant Physiology, 2003, 133, 1547-1556.                                                                                                      | 4.8  | 46        |
| 59 | Novel natural alleles at <i>FLC</i> and <i>LVR</i> loci account for enhanced vernalization responses in <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2012, 35, 1672-1684.                                                                                     | 5.7  | 45        |
| 60 | Quantitative genetic analysis of flowering time in tomato. Genome, 2007, 50, 303-315.                                                                                                                                                                                       | 2.0  | 36        |
| 61 | Cucumber mosaic virus infection as a potential selective pressure on Arabidopsis thaliana populations. PLoS Pathogens, 2019, 15, e1007810.                                                                                                                                  | 4.7  | 35        |
| 62 | Natural Variation Identifies ICARUS1, a Universal Gene Required for Cell Proliferation and Growth at<br>High Temperatures in Arabidopsis thaliana. PLoS Genetics, 2015, 11, e1005085.                                                                                       | 3.5  | 34        |
| 63 | Spatio-temporal variation in fitness responses to contrasting environments in <i>Arabidopsis thaliana</i> . Evolution; International Journal of Organic Evolution, 2018, 72, 1570-1586.                                                                                     | 2.3  | 34        |
| 64 | Differential Tolerance to Direct and Indirect Density-Dependent Costs of Viral Infection in Arabidopsis thaliana. PLoS Pathogens, 2009, 5, e1000531.                                                                                                                        | 4.7  | 33        |
| 65 | QTL analysis of seed dormancy in Arabidopsis using recombinant inbred lines and MQM mapping.<br>Heredity, 1997, 79, 190-200.                                                                                                                                                | 2.6  | 31        |
| 66 | An oxygen-sensing mechanism for angiosperm adaptation to altitude. Nature, 2022, 606, 565-569.                                                                                                                                                                              | 27.8 | 31        |
| 67 | Environmental and genetic interactions reveal <i>FLOWERING LOCUSC</i> as a modulator of the natural variation for the plasticity of flowering in Arabidopsis. Plant, Cell and Environment, 2016, 39, 282-294.                                                               | 5.7  | 29        |
| 68 | Pleiotropic Effects of the Arabidopsis Cryptochrome 2 Allelic Variation Underlie Fruit Traitâ€Related QTL. Plant Biology, 2004, 6, 370-374.                                                                                                                                 | 3.8  | 28        |
| 69 | Temperature fineâ€ŧunes Mediterranean <i>Arabidopsis thaliana</i> life ycle phenology geographically.<br>Plant Biology, 2018, 20, 148-156.                                                                                                                                  | 3.8  | 20        |
| 70 | A cytogenetic map on the entire length of rye chromosome 1R, including one translocation<br>breakpoint, three isozyme loci and four C-bands. Theoretical and Applied Genetics, 1993, 85-85, 735-744.                                                                        | 3.6  | 19        |
| 71 | QTL Analysis. , 2006, 323, 79-100.                                                                                                                                                                                                                                          |      | 19        |
| 72 | Ecological, genetic and evolutionary drivers of regional genetic differentiation in Arabidopsis<br>thaliana. BMC Evolutionary Biology, 2020, 20, 71.                                                                                                                        | 3.2  | 18        |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | An ecological history of the relict genetic lineage of Arabidopsis thaliana. Environmental and<br>Experimental Botany, 2020, 170, 103800.                                                                                 | 4.2 | 15        |
| 74 | Genetic linkage between cytological markers and the seed storage protein lociSec2[Gli-R2] andSec3[Glu-R1] in rye. Theoretical and Applied Genetics, 1993, 87, 321-327.                                                    | 3.6 | 14        |
| 75 | Quantifying temporal change in plant population attributes: insights from a resurrection approach.<br>AoB PLANTS, 2018, 10, ply063.                                                                                       | 2.3 | 14        |
| 76 | The Use of Recombinant Inbred Lines (RILs) for Genetic Mapping. , 1998, 82, 137-146.                                                                                                                                      |     | 13        |
| 77 | MYB transcription factors drive evolutionary innovations in Arabidopsis fruit trichome patterning.<br>Plant Cell, 2021, 33, 548-565.                                                                                      | 6.6 | 12        |
| 78 | Genetic mapping of cytological and isozyme markers on chromosomes 1R, 3R, 4R and 6R of rye.<br>Theoretical and Applied Genetics, 1994, 88, 208-214.                                                                       | 3.6 | 11        |
| 79 | A hierarchical Bayesian Beta regression approach to study the effects of geographical genetic structure and spatial autocorrelation on species distribution range shifts. Molecular Ecology Resources, 2019, 19, 929-943. | 4.8 | 6         |
| 80 | A Genetic Dissection of Natural Variation for Stomatal Abundance Traits in Arabidopsis. Frontiers in<br>Plant Science, 2019, 10, 1392.                                                                                    | 3.6 | 6         |
| 81 | Natural Variation in Arabidopsis thaliana. , 2011, , 123-151.                                                                                                                                                             |     | 6         |
| 82 | Physical mapping of translocation breakpoints in rye by means of synaptonemal complex analysis.<br>Theoretical and Applied Genetics, 1994, 89, 33-41.                                                                     | 3.6 | 5         |
| 83 | Genetic Interactions and Molecular Evolution of the Duplicated Genes <i>ICARUS2</i> and <i>ICARUS1</i> Help Arabidopsis Plants Adapt to Different Ambient Temperatures. Plant Cell, 2019, 31, 1222-1237.                  | 6.6 | 3         |
| 84 | A role of flowering genes in the tolerance of <i>Arabidopsis thaliana</i> to cucumber mosaic virus.<br>Molecular Plant Pathology, 2022, 23, 175-187.                                                                      | 4.2 | 3         |
| 85 | Control of perennial flowering and perenniality in Arabis alpina, a relative of Arabidopsis thaliana.<br>Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 153,<br>S195-S196.     | 1.8 | 2         |
| 86 | Differential environmental and genomic architectures shape the natural diversity for trichome<br>patterning and morphology in different Arabidopsis organs. Plant, Cell and Environment, 2022, 45,<br>3018-3035.          | 5.7 | 2         |
| 87 | Analyses of Natural Variation: Field Experiments and Nucleotide Diversity for Your Favorite Gene.<br>Methods in Molecular Biology, 2021, 2200, 93-112.                                                                    | 0.9 | 1         |