Fabien Ferrage

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4663973/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sequential assignment of NMR spectra of peptides at natural isotopic abundance with zero- and ultra-low-field total correlation spectroscopy (ZULF-TOCSY). Physical Chemistry Chemical Physics, 2021, 23, 9715-9720.	2.8	3
2	How wide is the window opened by high-resolution relaxometry on the internal dynamics of proteins in solution?. Journal of Biomolecular NMR, 2021, 75, 119-131.	2.8	9
3	Detection of Metabolite–Protein Interactions in Complex Biological Samples by High-Resolution Relaxometry: Toward Interactomics by NMR. Journal of the American Chemical Society, 2021, 143, 9393-9404.	13.7	18
4	Total Correlation Spectroscopy across All NMR-Active Nuclei by Mixing at Zero Field. Journal of Physical Chemistry Letters, 2020, 11, 7291-7296.	4.6	10
5	Two-field transverse relaxation-optimized spectroscopy for the study of large biomolecules – An in silico investigation. Journal of Magnetic Resonance Open, 2020, 4-5, 100007.	1.1	0
6	Sensitivity-enhanced three-dimensional and carbon-detected two-dimensional NMR of proteins using hyperpolarized water. Journal of Biomolecular NMR, 2020, 74, 161-171.	2.8	17
7	Boosting the resolution of low-field \$\$^{15}hbox {N}\$\$ relaxation experiments on intrinsically disordered proteins with triple-resonance NMR. Journal of Biomolecular NMR, 2020, 74, 139-145.	2.8	5
8	Theoretical and computational framework for the analysis of the relaxation properties of arbitrary spin systems. Application to high-resolution relaxometry. Journal of Magnetic Resonance, 2020, 313, 106718.	2.1	18
9	Surprising absence of strong homonuclear coupling at low magnetic field explored by two-field nuclear magnetic resonance spectroscopy. Magnetic Resonance, 2020, 1, 237-246.	1.9	4
10	Understanding the methyl-TROSY effect over a wide range of magnetic fields. Journal of Chemical Physics, 2019, 150, 224202.	3.0	5
11	Reducing bias in the analysis of solution-state NMR data with dynamics detectors. Journal of Chemical Physics, 2019, 151, 034102.	3.0	19
12	Protein Dynamics from Accurate Low-Field Site-Specific Longitudinal and Transverse Nuclear Spin Relaxation. Journal of Physical Chemistry Letters, 2019, 10, 5917-5922.	4.6	11
13	Experimental characterization of the dynamics of IDPs and IDRs by NMR. , 2019, , 65-92.		3
14	Field-cycling long-lived-state NMR of ¹⁵ N ₂ spin pairs. Molecular Physics, 2019, 117, 861-867.	1.7	11
15	Analysis of NMR Spin-Relaxation Data Using an Inverse Gaussian Distribution Function. Biophysical Journal, 2018, 115, 2301-2309.	0.5	19
16	Measuring Solvent Hydrogen Exchange Rates by Multifrequency Excitation ¹⁵ N CEST: Application to Protein Phase Separation. Journal of Physical Chemistry B, 2018, 122, 11206-11217.	2.6	19
17	Time-Resolved Protein Side-Chain Motions Unraveled by High-Resolution Relaxometry and Molecular Dynamics Simulations. Journal of the American Chemical Society, 2018, 140, 13456-13465.	13.7	40
18	Highâ€Resolution NMR of Folded Proteins in Hyperpolarized Physiological Solvents. Chemistry - A European Journal, 2018, 24, 13418-13423.	3.3	20

FABIEN FERRAGE

#	Article	IF	CITATIONS
19	Determination of Protein ps-ns Motions by High-Resolution Relaxometry. Methods in Molecular Biology, 2018, 1688, 169-203.	0.9	7
20	Full Correlations across Broad NMR Spectra by Twoâ€Field Total Correlation Spectroscopy. ChemPhysChem, 2017, 18, 2772-2776.	2.1	5
21	Ultra-wide range field-dependent measurements of the relaxivity of Gd1â^'xEuxVO4 nanoparticle contrast agents using a mechanical sample-shuttling relaxometer. Scientific Reports, 2017, 7, 44770.	3.3	18
22	Structure and Dynamics of an Intrinsically Disordered Protein Region That Partially Folds upon Binding by Chemical-Exchange NMR. Journal of the American Chemical Society, 2017, 139, 12219-12227.	13.7	35
23	Protein dynamics from nuclear magnetic relaxation. Chemical Society Reviews, 2016, 45, 2410-2422.	38.1	44
24	Recovering Invisible Signals by Twoâ€Field NMR Spectroscopy. Angewandte Chemie, 2016, 128, 10040-10043.	2.0	3
25	Recovering Invisible Signals by Twoâ€Field NMR Spectroscopy. Angewandte Chemie - International Edition, 2016, 55, 9886-9889.	13.8	23
26	High-resolution two-field nuclear magnetic resonance spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 33187-33194.	2.8	26
27	Nuclear overhauser spectroscopy of chiral CHD methylene groups. Journal of Biomolecular NMR, 2016, 64, 27-37.	2.8	1
28	Sample Shuttling Relaxometry of Contrast Agents: NMRD Profiles above 1 T with a Single Device. Applied Magnetic Resonance, 2016, 47, 237-246.	1.2	12
29	Simple method for the generation of multiple homogeneous field volumes inside the bore of superconducting magnets. Scientific Reports, 2015, 5, 12200.	3.3	12
30	Cross-correlated relaxation measurements under adiabatic sweeps: determination of local order in proteins. Journal of Biomolecular NMR, 2015, 63, 353-365.	2.8	6
31	Identification of Hydrophobic Interfaces in Protein-Ligand Complexes by Selective Saturation Transfer NMR Spectroscopy. Molecules, 2015, 20, 21992-21999.	3.8	3
32	Distribution of Pico- and Nanosecond Motions in Disordered Proteins from Nuclear Spin Relaxation. Biophysical Journal, 2015, 109, 988-999.	0.5	77
33	Side Chain Dynamics of Carboxyl and Carbonyl Groups in the Catalytic Function of <i>Escherichia coli</i> Ribonuclease H. Journal of the American Chemical Society, 2013, 135, 18024-18027.	13.7	12
34	Nanosecond Time Scale Motions in Proteins Revealed by High-Resolution NMR Relaxometry. Journal of the American Chemical Society, 2013, 135, 18665-18672.	13.7	80
35	Efficient determination of diffusion coefficients by monitoring transport during recovery delays in NMR. Chemical Communications, 2012, 48, 5307.	4.1	8
36	Protein Dynamics by 15N Nuclear Magnetic Relaxation. Methods in Molecular Biology, 2012, 831, 141-163.	0.9	19

FABIEN FERRAGE

#	Article	IF	CITATIONS
37	Time Scales of Slow Motions in Ubiquitin Explored by Heteronuclear Double Resonance. Journal of the American Chemical Society, 2012, 134, 2481-2484.	13.7	30
38	Structure and Dynamics of the Second CARD of Human RIG-I Provide Mechanistic Insights into Regulation of RIG-I Activation. Structure, 2012, 20, 2048-2061.	3.3	41
39	Methods to determine slow diffusion coefficients of biomolecules. Applications to Engrailed 2, a partially disordered protein. Journal of Biomolecular NMR, 2011, 50, 209-218.	2.8	18
40	1H, 13C and 15N resonance assignment of a 114-residue fragment of Engrailed 2 homeoprotein, a partially disordered protein. Biomolecular NMR Assignments, 2011, 5, 229-231.	0.8	10
41	Control of Cross Relaxation of Multipleâ€Quantum Coherences Induced by Fast Chemical Exchange under Heteronuclear Doubleâ€Resonance Irradiation. ChemPhysChem, 2011, 12, 333-341.	2.1	8
42	Structural determination of biomolecular interfaces by nuclear magnetic resonance of proteins with reduced proton density. Journal of Biomolecular NMR, 2010, 47, 41-54.	2.8	14
43	Nuclear spin relaxation in isotropic and anisotropic media. Progress in Nuclear Magnetic Resonance Spectroscopy, 2010, 57, 111-158.	7.5	57
44	On the measurement of 15N–{1H} nuclear Overhauser effects. 2. Effects of the saturation scheme and water signal suppression. Journal of Magnetic Resonance, 2010, 207, 294-303.	2.1	40
45	Heteronuclear double resonance in nuclear magnetic resonance spectroscopy: Relaxation of multiple-quantum coherences. Journal of Chemical Physics, 2009, 131, 224503.	3.0	8
46	Preservation of heteronuclear multiple-quantum coherences in NMR by double-resonance irradiation. Journal of Chemical Physics, 2009, 130, 074506.	3.0	11
47	Accurate Sampling of High-Frequency Motions in Proteins by Steady-State ¹⁵ Nâ^{{sup>1H} Nuclear Overhauser Effect Measurements in the Presence of Cross-Correlated Relaxation. Journal of the American Chemical Society, 2009, 131, 6048-6049.	13.7	57
48	Broadband Dipolar Recoupling for Magnetization Transfer in Solidâ€ S tate NMR Correlation Spectroscopy. ChemPhysChem, 2008, 9, 1104-1106.	2.1	19
49	On the measurement of 15N–{1H} nuclear Overhauser effects. Journal of Magnetic Resonance, 2008, 192, 302-313.	2.1	37
50	Single or triple gradients?. Journal of Magnetic Resonance, 2008, 193, 110-118.	2.1	24
51	Multiple-Timescale Dynamics of Side-Chain Carboxyl and Carbonyl Groups in Proteins by ¹³ C Nuclear Spin Relaxation. Journal of the American Chemical Society, 2008, 130, 15805-15807.	13.7	37
52	Accurate measurement of longitudinal cross-relaxation rates in nuclear magnetic resonance. Journal of Chemical Physics, 2007, 126, 134508.	3.0	35
53	Joint composite-rotation adiabatic-sweep isotope filtration. Journal of Biomolecular NMR, 2007, 38, 11-22.	2.8	6
54	Protein Backbone Dynamics through13Câ€~â~13CαCross-Relaxation in NMR Spectroscopy. Journal of the American Chemical Society, 2006, 128, 11072-11078.	13.7	28

FABIEN FERRAGE

#	Article	IF	CITATIONS
55	An Approach To Extract Rate Constants from Reactionâ^'Diffusion Dynamics in a Microchannel. Analytical Chemistry, 2005, 77, 3417-3424.	6.5	54
56	Stochastic Resonance to Control Diffusive Motion in Chemistry. Journal of Physical Chemistry B, 2005, 109, 1318-1328.	2.6	12
57	Controlled assembly of covalent and supramolecular chemical modules: from engineering of complex structures to high-performance chromatography. Russian Chemical Bulletin, 2004, 53, 1379-1384.	1.5	0
58	Frequency-Switched Single-Transition Cross-Polarization: A Tool for Selective Experiments in Biomolecular NMR. ChemPhysChem, 2004, 5, 76-84.	2.1	14
59	Slow Diffusion of Macromolecular Assemblies by a New Pulsed Field Gradient NMR Methodâ€. Journal of the American Chemical Society, 2003, 125, 2541-2545.	13.7	75
60	Quasi-isotropic single-transition cross-polarization in nuclear magnetic resonance. Journal of Chemical Physics, 2002, 116, 10041-10050.	3.0	7
61	Highly Selective Excitation in Biomolecular NMR by Frequency-Switched Single-Transition Cross-Polarization. Journal of the American Chemical Society, 2002, 124, 2076-2077.	13.7	7
62	Synthesis and Properties of Water-Soluble Gold Colloids Covalently Derivatized with Neutral Polymer Monolayers. Journal of the American Chemical Society, 2002, 124, 5811-5821.	13.7	132
63	Tetrahedral Onsager Crosses for Solubility Improvement and Crystallization Bypass. Journal of the American Chemical Society, 2001, 123, 8177-8188.	13.7	62
64	Single-Transition Coherence Transfer by Adiabatic Cross Polarization in NMR. ChemPhysChem, 2000, 1, 217-221.	2.1	4
65	Coherence transfer by single-transition cross-polarization: Quantitation of cross-correlation effects in nuclear magnetic resonance. Journal of Chemical Physics, 2000, 113, 1081-1087.	3.0	19
66	Single-Transition Coherence Transfer by Adiabatic Cross Polarization in NMR. ChemPhysChem, 2000, 1, 217-221.	2.1	0
67	Chapter 4. Cross-correlation in Biomolecules. New Developments in NMR, 0, , 239-315.	0.1	1