Shazib Pervaiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4663911/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
3	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
4	Chemopreventive Agent Resveratrol, a Natural Product Derived From Grapes, Triggers CD95 Signaling-Dependent Apoptosis in Human Tumor Cells. Blood, 1998, 92, 996-1002.	1.4	573
5	Resveratrol: from grapevines to mammalian biology. FASEB Journal, 2003, 17, 1975-1985.	0.5	466
6	Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 735-745.	1.0	462
7	Resveratrol: Its Biologic Targets and Functional Activity. Antioxidants and Redox Signaling, 2009, 11, 2851-2897.	5.4	370
8	Annexin 1: the new face of an old molecule. FASEB Journal, 2007, 21, 968-975.	0.5	347
9	TNF receptor superfamilyâ€induced cell death: redoxâ€dependent execution. FASEB Journal, 2006, 20, 1589-1598.	0.5	274
10	Cancer stem cell: target for antiâ \in cancer therapy. FASEB Journal, 2007, 21, 3777-3785.	0.5	241
11	Simultaneous Induction of Non-Canonical Autophagy and Apoptosis in Cancer Cells by ROS-Dependent ERK and JNK Activation. PLoS ONE, 2010, 5, e9996.	2.5	224
12	hTERT Overexpression Alleviates Intracellular ROS Production, Improves Mitochondrial Function, and Inhibits ROS-Mediated Apoptosis in Cancer Cells. Cancer Research, 2011, 71, 266-276.	0.9	206
13	Do STAT3 inhibitors have potential in the future for cancer therapy?. Expert Opinion on Investigational Drugs, 2017, 26, 883-887.	4.1	191
14	Apoptosis induced by hydrogen peroxide is mediated by decreased superoxide anion concentration and reduction of intracellular milieu. FEBS Letters, 1998, 440, 13-18.	2.8	185
15	Oxidative Stress Regulation of Stem and Progenitor Cells. Antioxidants and Redox Signaling, 2009, 11, 2777-2789.	5.4	162
16	Redox Regulation of p53, Redox Effectors Regulated by p53: A Subtle Balance. Antioxidants and Redox Signaling, 2012, 16, 1285-1294.	5.4	160
17	Reactive oxygen intermediates regulate cellular response to apoptotic stimuli: An hypothesis. Free Radical Research, 1999, 30, 247-252.	3.3	149
18	Superoxide anion: Oncogenic reactive oxygen species?. International Journal of Biochemistry and Cell Biology, 2007, 39, 1297-1304.	2.8	143

#	Article	IF	CITATIONS
19	Redox regulation of cancer cell migration and invasion. Mitochondrion, 2013, 13, 246-253.	3.4	143
20	Withaferin A induces apoptosis in human melanoma cells through generation of reactive oxygen species and down-regulation of Bcl-2. Apoptosis: an International Journal on Programmed Cell Death, 2011, 16, 1014-1027.	4.9	134
21	Intracellular Acidification Triggered by Mitochondrial-derived Hydrogen Peroxide Is an Effector Mechanism for Drug-induced Apoptosis in Tumor Cells. Journal of Biological Chemistry, 2001, 276, 514-521.	3.4	129
22	Hydrogen Peroxide-Mediated Cytosolic Acidification Is a Signal for Mitochondrial Translocation of Bax during Drug-Induced Apoptosis of Tumor Cells. Cancer Research, 2004, 64, 7867-7878.	0.9	122
23	ART AND SCIENCE OF PHOTODYNAMIC THERAPY. Clinical and Experimental Pharmacology and Physiology, 2006, 33, 551-556.	1.9	121
24	Tumor Intracellular Redox Status and Drug Resistance-Serendipity or a Causal Relationship?. Current Pharmaceutical Design, 2004, 10, 1969-1977.	1.9	111
25	Activation of the RacGTPase inhibits apoptosis in human tumor cells. Oncogene, 2001, 20, 6263-6268.	5.9	110
26	TRAILing death in cancer. Molecular Aspects of Medicine, 2010, 31, 93-112.	6.4	109
27	Mitochondrial ROS and involvement of Bcl-2 as a mitochondrial ROS regulator. Mitochondrion, 2014, 19, 39-48.	3.4	103
28	A Permissive Apoptotic Environment: Function of a Decrease in Intracellular Superoxide Anion and Cytosolic Acidification. Biochemical and Biophysical Research Communications, 2002, 290, 1145-1150.	2.1	100
29	Mitochondria-mediated oxidative stress during viral infection. Trends in Microbiology, 2022, 30, 679-692.	7.7	91
30	Mitochondria: Redox Metabolism and Dysfunction. Biochemistry Research International, 2012, 2012, 1-14.	3.3	88
31	Metabolic reprogramming of oncogene-addicted cancer cells to OXPHOS as a mechanism of drug resistance. Redox Biology, 2019, 25, 101076.	9.0	87
32	Resveratrol Inhibits Drug-Induced Apoptosis in Human Leukemia Cells by Creating an Intracellular Milieu Nonpermissive for Death Execution. Cancer Research, 2004, 64, 1452-1459.	0.9	86
33	LY294002 and LY303511 Sensitize Tumor Cells to Drug-Induced Apoptosis via Intracellular Hydrogen Peroxide Production Independent of the Phosphoinositide 3-Kinase-Akt Pathway. Cancer Research, 2005, 65, 6264-6274.	0.9	85
34	Multi-lineage differentiation of mesenchymal stem cells – To Wnt, or not Wnt. International Journal of Biochemistry and Cell Biology, 2015, 68, 139-147.	2.8	85
35	Apoptosis in the pathophysiology of diabetes mellitus. International Journal of Biochemistry and Cell Biology, 2007, 39, 497-504.	2.8	82
36	Pro-oxidant Activity of Low Doses of Resveratrol Inhibits Hydrogen Peroxide-Induced Apoptosis. Annals of the New York Academy of Sciences, 2003, 1010, 365-373.	3.8	81

#	Article	IF	CITATIONS
37	Ser70 phosphorylation of Bcl-2 by selective tyrosine nitration of PP2A-B56l´ stabilizes its antiapoptotic activity. Blood, 2014, 124, 2223-2234.	1.4	80
38	Functional proteomics of resveratrol-induced colon cancer cell apoptosis: Caspase-6-mediated cleavage of lamin A is a major signaling loop. Proteomics, 2006, 6, 2386-2394.	2.2	79
39	Superoxide anion inhibits drug-induced tumor cell death. FEBS Letters, 1999, 459, 343-348.	2.8	78
40	Regulation of mitochondrial metabolism: yet another facet in the biology of the oncoprotein Bcl-2. Biochemical Journal, 2011, 435, 545-551.	3.7	76
41	Chemotherapeutic potential of the chemopreventive phytoalexin resveratrol. Drug Resistance Updates, 2004, 7, 333-344.	14.4	73
42	The small GTPase Rac1 is a novel binding partner of Bcl-2 and stabilizes its antiapoptotic activity. Blood, 2011, 117, 6214-6226.	1.4	73
43	LY303511 Enhances TRAIL Sensitivity of SHEP-1 Neuroblastoma Cells via Hydrogen Peroxide–Mediated Mitogen-Activated Protein Kinase Activation and Up-regulation of Death Receptors. Cancer Research, 2009, 69, 1941-1950.	0.9	71
44	Noncanonical Cell Fate Regulation by Bcl-2 Proteins. Trends in Cell Biology, 2020, 30, 537-555.	7.9	70
45	NHE-1: A Promising Target for Novel Anti-cancer Therapeutics. Current Pharmaceutical Design, 2012, 18, 1372-1382.	1.9	68
46	Bcl-2 Modulates Resveratrol-Induced ROS Production by Regulating Mitochondrial Respiration in Tumor Cells. Antioxidants and Redox Signaling, 2010, 13, 807-819.	5.4	66
47	ROS, autophagy, mitochondria and cancer: Ras, the hidden master?. Mitochondrion, 2013, 13, 155-162.	3.4	65
48	Reactive oxygenâ€dependent production of novel photochemotherapeutic agents. FASEB Journal, 2001, 15, 612-617.	0.5	64
49	Resveratrol in cell fate decisions. Journal of Bioenergetics and Biomembranes, 2007, 39, 59-63.	2.3	64
50	Resveratrol displays converse dose-related effects on 5-fluorouracil-evoked colon cancer cell apoptosis: The roles of caspase-6 and p53. Cancer Biology and Therapy, 2008, 7, 1305-1312.	3.4	62
51	CTGF and chronic kidney fibrosis. Frontiers in Bioscience - Scholar, 2009, S1, 132-141.	2.1	58
52	Resveratrol attenuates C5aâ€induced inflammatory responses <i>in vitro</i> and <i>in vivo</i> by inhibiting phospholipase D and sphingosine kinase activities. FASEB Journal, 2009, 23, 2412-2424.	0.5	58
53	Bcl-2: A Prime Regulator of Mitochondrial Redox Metabolism in Cancer Cells. Antioxidants and Redox Signaling, 2011, 15, 2975-2987.	5.4	57
54	Purified Photoproducts of Merocyanine 540 Trigger Cytochrome C Release and Caspase 8-Dependent Apoptosis in Human Leukemia and Melanoma Cells. Blood, 1999, 93, 4096-4108.	1.4	54

#	Article	IF	CITATIONS
55	Induction of mitochondrial permeability transition and cytochrome C release in the absence of caspase activation is insufficient for effective apoptosis in human leukemia cells. Blood, 2000, 95, 1773-1780.	1.4	51
56	Plasma membrane sequestration of apoptotic protease-activating factor-1 in human B-lymphoma cells: a novel mechanism of chemoresistance. Blood, 2005, 105, 4070-4077.	1.4	50
57	[13] Hydrogen peroxide-induced apoptosis: Oxidative or reductive stress?. Methods in Enzymology, 2002, 352, 150-159.	1.0	44
58	Targeting Mitochondrial Apoptosis to Overcome Treatment Resistance in Cancer. Cancers, 2020, 12, 574.	3.7	44
59	Resveratrol-from the Bottle to the Bedside?. Leukemia and Lymphoma, 2001, 40, 491-498.	1.3	42
60	Manganese Superoxide Dismutase Expression Regulates the Switch Between an Epithelial and a Mesenchymal-Like Phenotype in Breast Carcinoma. Antioxidants and Redox Signaling, 2016, 25, 283-299.	5.4	42
61	TUMOR CELL SPECIFIC DARK CYTOTOXICITY OF LIGHT-EXPOSED MEROCYANINE 540: IMPLICATIONS FOR SYSTEMIC THERAPY WITHOUT LIGHT. Photochemistry and Photobiology, 1990, 52, 831-838.	2.5	35
62	Manganese Superoxide Dismutase Is a Promising Target for Enhancing Chemosensitivity of Basal-Like Breast Carcinoma. Antioxidants and Redox Signaling, 2014, 20, 2326-2346.	5.4	35
63	Assessment of Oxidative Stress-Induced DNA Damage by Immunoflourescent Analysis of 8-OxodG. Methods in Cell Biology, 2011, 103, 99-113.	1.1	34
64	The redox-senescence axis and its therapeutic targeting. Redox Biology, 2021, 45, 102032.	9.0	34
65	Functional and evolutionary analyses on expressed intronless genes in the mouse genome. FEBS Letters, 2006, 580, 1472-1478.	2.8	33
66	Redox inhibition of protein phosphatase PP2A: Potential implications in oncogenesis and its progression. Redox Biology, 2019, 27, 101105.	9.0	33
67	MnSOD is implicated in accelerated wound healing upon Negative Pressure Wound Therapy (NPWT): A case in point for MnSOD mimetics as adjuvants for wound management. Redox Biology, 2019, 20, 307-320.	9.0	33
68	Overexpression of Bcl-2 induces STAT-3 activation <i>via</i> an increase in mitochondrial superoxide. Oncotarget, 2015, 6, 34191-34205.	1.8	33
69	Targeting Cell Metabolism as Cancer Therapy. Antioxidants and Redox Signaling, 2020, 32, 285-308.	5.4	32
70	Pro-Oxidant Milieu Blunts Scissors: Insight into Tumor Progression, Drug Resistance, and Novel Druggable Targets. Current Pharmaceutical Design, 2006, 12, 4469-4477.	1.9	31
71	Synthetic Lethality of a Novel Small Molecule Against Mutant KRAS-Expressing Cancer Cells Involves AKT-Dependent ROS Production. Antioxidants and Redox Signaling, 2016, 24, 781-794.	5.4	31
72	Tumor cell redox state and mitochondria at the center of the non-canonical activity of telomerase reverse transcriptase. Molecular Aspects of Medicine, 2010, 31, 21-28.	6.4	29

#	Article	IF	CITATIONS
73	Spontaneous and 5-fluorouracil-induced centrosome amplification lowers the threshold to resveratrol-evoked apoptosis in colon cancer cells. Cancer Letters, 2010, 288, 36-41.	7.2	29
74	Buried alive: a novel approach to cancer treatment. FASEB Journal, 2004, 18, 1-4.	0.5	28
75	Serine-70 phosphorylated Bcl-2 prevents oxidative stress-induced DNA damage by modulating the mitochondrial redox metabolism. Nucleic Acids Research, 2020, 48, 12727-12745.	14.5	27
76	Production of Intracellular Superoxide Mediates Dithiothreitol- Dependent Inhibition of Apoptotic Cell Death. Antioxidants and Redox Signaling, 2005, 7, 456-464.	5.4	26
77	A Distinct Reactive Oxygen Species Profile Confers Chemoresistance in Glioma-Propagating Cells and Associates with Patient Survival Outcome. Antioxidants and Redox Signaling, 2013, 19, 2261-2279.	5.4	25
78	Cross Talk Between Cellular Redox State and the Antiapoptotic Protein Bcl-2. Antioxidants and Redox Signaling, 2018, 29, 1215-1236.	5.4	25
79	A High-Content Phenotypic Screen Reveals the Disruptive Potency of Quinacrine and 3′,4′-Dichlorobenzamil on the Digestive Vacuole of Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 2014, 58, 550-558.	3.2	23
80	Caspase proteases mediate apoptosis induced by anticancer agent preactivated MC540 in human tumor cell lines. Cancer Letters, 1998, 128, 11-22.	7.2	22
81	Reactive Oxygen Species and Oncoprotein Signaling-A Dangerous Liaison. Antioxidants and Redox Signaling, 2018, 29, 1553-1588.	5.4	22
82	Simultaneous analysis of steady-state intracellular pH and cell morphology by automated laser scanning cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2007, 71A, 87-93.	1.5	21
83	Influence of cell culture configuration on the post-cryopreservation viability of primary rat hepatocytes. Biomaterials, 2012, 33, 829-836.	11.4	21
84	Automated laser scanning cytometry: A powerful tool for multi-parameter analysis of drug-induced apoptosis. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2007, 71A, 80-86.	1.5	20
85	The three Rs along the TRAIL: Resistance, re-sensitization and reactive oxygen species (ROS). Free Radical Research, 2012, 46, 996-1003.	3.3	20
86	A feedforward relationship between active Rac1 and phosphorylated Bcl-2 is critical for sustaining Bcl-2 phosphorylation and promoting cancer progression. Cancer Letters, 2019, 457, 151-167.	7.2	20
87	Protein damage by photoproducts of merocyanine 540. Free Radical Biology and Medicine, 1992, 12, 389-396.	2.9	19
88	Dominant negative Rac1 attenuates paclitaxelâ€induced apoptosis in human melanoma cells through upregulation of heat shock protein 27: A functional proteomic analysis. Proteomics, 2007, 7, 4112-4122.	2.2	19
89	Anti-Cancer Drugs of Today and Tomorrow: Are we Close to Making the Turn from Treating to Curing Cancer?. Current Pharmaceutical Design, 2002, 8, 1723-1734.	1.9	18
90	Crosstalk between Bcl-2 family and Ras family small GTPases: potential cell fate regulation?. Frontiers in Oncology, 2012, 2, 206.	2.8	18

#	Article	IF	CITATIONS
91	Gelsolin-Cu/ZnSOD interaction alters intracellular reactive oxygen species levels to promote cancer cell invasion. Oncotarget, 2016, 7, 52832-52848.	1.8	18
92	Involvement of Reactive Oxygen Species in Apoptosis Induced by Pharmacological Inhibition of Protein Kinase CK2. Annals of the New York Academy of Sciences, 2009, 1171, 591-599.	3.8	17
93	FLIP: A flop for execution signals. Cancer Letters, 2013, 332, 151-155.	7.2	17
94	LAMA4 upregulation is associated with high liver metastasis potential and poor survival outcome of Pancreatic Cancer. Theranostics, 2020, 10, 10274-10289.	10.0	17
95	Breast Cancer: A Molecular and Redox Snapshot. Antioxidants and Redox Signaling, 2016, 25, 337-370.	5.4	16
96	Preactivation—a novel antitumour and antiviral approach. European Journal of Cancer & Clinical Oncology, 1990, 26, 551-553.	0.7	15
97	Interplay between Mitochondrial Metabolism and Cellular Redox State Dictates Cancer Cell Survival. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-20.	4.0	15
98	Understanding the cancer stem cell phenotype: A step forward in the therapeutic management of cancer. Biochemical Pharmacology, 2019, 162, 79-88.	4.4	14
99	Resveratrol attenuates TLR-4 mediated inflammation and elicits therapeutic potential in models of sepsis. Scientific Reports, 2020, 10, 18837.	3.3	14
100	Redox signaling in the pathogenesis of human disease and the regulatory role of autophagy. International Review of Cell and Molecular Biology, 2020, 352, 189-214.	3.2	14
101	Sustained IKKβ phosphorylation and NF-κB activation by superoxide-induced peroxynitrite-mediated nitrotyrosine modification of B56γ3 and PP2A inactivation. Redox Biology, 2021, 41, 101834.	9.0	14
102	ERK1/2 activation is required for resveratrol-induced apoptosis in MDA-MB-231 cells. International Journal of Oncology, 2008, , .	3.3	13
103	Resveratrol regulates the expression of NHE-1 by repressing its promoter activity: Critical involvement of intracellular H2O2 and caspases 3 and 6 in the absence of cell death. International Journal of Biochemistry and Cell Biology, 2009, 41, 945-956.	2.8	13
104	Hippo circuitry and the redox modulation of hippo components in cancer cell fate decisions. International Journal of Biochemistry and Cell Biology, 2015, 69, 20-28.	2.8	13
105	Superoxide induced inhibition of death receptor signaling is mediated via induced expression of apoptosis inhibitory protein cFLIP. Redox Biology, 2020, 30, 101403.	9.0	13
106	Gene expression analysis of heat-shock proteins and redox regulators reveals combinatorial prognostic markers in carcinomas of the gastrointestinal tract. Redox Biology, 2019, 25, 101060.	9.0	12
107	Synergy between preactivated photofrin-II and tamoxifen in killing retrofibroma, pseudomyxoma and breast cancer cells. European Journal of Cancer & Clinical Oncology, 1991, 27, 1034-1039.	0.7	11
108	Peroxynitrite promotes serine-62 phosphorylation-dependent stabilization of the oncoprotein c-Myc. Redox Biology, 2020, 34, 101587.	9.0	11

#	Article	lF	CITATIONS
109	Reactive oxygen species (ROS) and sensitization to TRAIL-induced apoptosis, in Bayesian network modelling of HeLa cell response to LY303511. Biochemical Pharmacology, 2012, 84, 1307-1317.	4.4	10
110	Computational modelling of LY303511 and TRAIL-induced apoptosis suggests dynamic regulation of cFLIP. Bioinformatics, 2013, 29, 347-354.	4.1	8
111	Redox Dichotomy in Cell Fate Decision: Evasive Mechanism or Achilles Heel?. Antioxidants and Redox Signaling, 2018, 29, 1191-1195.	5.4	8
112	Repressing the Activity of Protein Kinase CK2 Releases Mitochondria-Mediated Apoptosis in Cancer Cells. Current Drug Targets, 2011, 12, 902-908.	2.1	7
113	The anti-oxidant and pro-oxidant dichotomy of Bcl-2. Biological Chemistry, 2016, 397, 585-593.	2.5	7
114	mitoEnergetics and cancer cell fate. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 462-467.	1.0	6
115	Biphasic activity of CD137 ligand-stimulated monocytes on T cell apoptosis and proliferation. Journal of Leukocyte Biology, 2011, 89, 707-720.	3.3	6
116	Cellular senescence: Silent operator and therapeutic target in cancer. IUBMB Life, 2021, 73, 530-542.	3.4	6
117	KIF1BÎ ² increases ROS to mediate apoptosis and reinforces its protein expression through O 2 â^' in a positive feedback mechanism in neuroblastoma. Scientific Reports, 2017, 7, 16867.	3.3	5
118	Reactive Oxygen Species in Cell Fate Decisions. , 2009, , 199-221.		5
119	Aberrant localization of apoptosis protease activating factor-1 in lipid raft sub-domains of diffuse large B cell lymphomas. Oncotarget, 2016, 7, 83964-83975.	1.8	5
120	PLK1 inhibition selectively induces apoptosis in ARID1A deficient cells through uncoupling of oxygen consumption from ATP production. Oncogene, 2022, 41, 1986-2002.	5.9	5
121	Redox Pioneer: Professor Barry Halliwell. Antioxidants and Redox Signaling, 2011, 14, 1761-1766.	5.4	3
122	Bcl-2 phosphorylation permits a conducive pro-oxidant milieu for cancer cell survival and progression. Free Radical Biology and Medicine, 2018, 128, S65.	2.9	3
123	Cell signaling and fate through the redox lens. Redox Biology, 2019, 25, 101298.	9.0	3
124	gRASping the redox lever to modulate cancer cell fate signaling. Redox Biology, 2019, 25, 101094.	9.0	3
125	Identification of a novel catalytic inhibitor of topoisomerase II alpha that engages distinct mechanisms in p53wt or p53â^'/â^' cells to trigger G2/M arrest and senescence. Cancer Letters, 2022, 526, 284-303.	7.2	3
126	Akt mediated ROS-dependent selective targeting of mutant KRAS tumors. Free Radical Biology and Medicine, 2014, 75, S13.	2.9	2

#	Article	lF	CITATIONS
127	Abstract 3080: OPB-51602: a novel STAT3 inhibitor that targets mitochondrial respiratory chain and triggers STAT3 dependent ROS production. , 2016, , .		1
128	Crosstalk Between p53 and Mitochondrial Metabolism. , 2014, , 327-348.		1
129	TRAIL sensitivity of nasopharyngeal cancer cells involves redox dependent upregulation of TMTC2 and its interaction with membrane caspase-3. Redox Biology, 2021, 48, 102193.	9.0	1
130	Apoptosis Gene Information System - AGIS. Frontiers in Bioscience - Landmark, 2006, 11, 1814.	3.0	0
131	Editorial [Hot Topic: Cancer Cell Redox Status: Novel Target for Designing Strategies to Overcome Apoptosis Resistance (Executive Editor: S. Pervaiz)]. Current Pharmaceutical Design, 2006, 12, 4409-4410.	1.9	Ο
132	Conference roundup MAC 2011. Mitochondrion, 2013, 13, 153-154.	3.4	0
133	Bcl-2 Phosphorylation Induces Negative Feedback Upon Oxidative Stress by Engaging the Mitochondrial Respiratory System. Free Radical Biology and Medicine, 2015, 87, S64.	2.9	0
134	Abstract 1945: Modulation of intracellular redox milieu regulates Mcl-1 levels and sensitizes venetoclax resistant cancer cells. , 2021, , .		0
135	Mechanism of Apoptosis by Resveratrol. Oxidative Stress and Disease, 2005, , 85-104.	0.3	0
136	Neurohormetic Properties of the Phytochemical Resveratrol. Oxidative Stress and Disease, 2009, , .	0.3	0
137	Abstract 5577: STAT3 phosphorylation and Bcl-2 expression as a predictive signature for stratifying clinical lymphomas , 2013, , .		Ο
138	Abstract 4076: Redox dependent regulation of cFLIP promoter activity and gene expression by PTEN , 2013, , .		0
139	Abstract 5278: Superoxide mediated selective tyrosine nitration of protein phosphatase 2A-B56l´ stabilizes Bcl-2 phosphorylation and its anti-apoptotic activity. , 2014, , .		Ο
140	Abstract 2605: Selective targeting of KRAS mutant cancer cells by a novel small molecule compound. , 2014, , .		0
141	Abstract 4611: Novel lysosomotrophic agent inhibits in vivo tumor formation and triggers calcium-dependent cell death in a variety of human cancer cell lines. , 2014, , .		Ο
142	Abstract 13: Biophysical evidence for the existence of a functional interaction between the small GTPase Rac-1 and the anti-apoptotic protein Bcl-2. , 2015, , .		0
143	Abstract 1722: Effectiveness of predictive simulation in identifying potential patient-specific therapeutic targets in multiple myeloma-a pilot study. , 2015, , .		Ο
144	Abstract 3685: Redox regulation of p53 stability is a function of inhibition of PP2A-mediated dephosphorylation at threonine 55. , 2016, , .		0

#	Article	IF	CITATIONS
145	Abstract 3097: Structural and biophysical characterization of anti-apoptotic protein Bcl-2 and GTPase Rac1 interaction. , 2016, , .		0
146	Abstract 440: The oncogenic activity of a pro-oxidant intracellular milieu is associated with redox dependent activation of NF-kB. , 2017, , .		0
147	Abstract LB-277: A small molecule compound targets mutant Ras driven cancers via changes in mitochondrial morphology and mTOR-dependent execution. , 2018, , .		0
148	Abstract 4884: OXPHOS: A novel target for cancer therapy in oncogene addicted tumor. , 2018, , .		0
149	Abstract 259: Interplay between Bcl-2 and cFLIP in lymphoma disease progression is a function of an altered redox milieu. , 2019, , .		0
150	Abstract 363: Intracellular redox milieu regulates Mcl-1 and decreases overall mitochondrial priming in hematopoietic cancers. Cancer Research, 2022, 82, 363-363.	0.9	0