D Graham Pearson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/466352/publications.pdf

Version: 2024-02-01

138 papers 9,667 citations

³⁸⁷⁴² 50 h-index

93 g-index

140 all docs

140 docs citations

140 times ranked

4117 citing authors

#	Article	IF	CITATIONS
1	Deserpentinization and high-pressure (eclogite-facies) metamorphic features in the Eoarchean ultramafic body from Isua, Greenland. Geoscience Frontiers, 2022, 13, 101298.	8.4	10
2	No mantle residues in the Isua Supracrustal Belt. Earth and Planetary Science Letters, 2022, 579, 117348.	4.4	15
3	Metasomatic Modification of the Mesoarchaean Ulamertoq Ultramafic Body, Southern West Greenland. Journal of Petrology, 2022, 63, .	2.8	6
4	Controls on the Emplacement Style of Coherent Kimberlites in the Lac de Gras Field, Canada. Journal of Petrology, 2022, 63, .	2.8	3
5	Olivine xenocrysts reveal carbonated mid-lithosphere in the northern Slave craton. Lithos, 2022, 414-415, 106633.	1.4	6
6	Comment on "Discovery of davemaoite, CaSiO ₃ -perovskite, as a mineral from the lower mantle― Science, 2022, 376, eabo0882.	12.6	4
7	Mesoarchean diamonds formed in thickened lithosphere, caused by slab-stacking. Earth and Planetary Science Letters, 2022, 592, 117633.	4.4	8
8	Geochronology of Diamonds. Reviews in Mineralogy and Geochemistry, 2022, 88, 567-636.	4.8	18
9	A Review of the Geology of Global Diamond Mines and Deposits. Reviews in Mineralogy and Geochemistry, 2022, 88, 1-117.	4.8	18
10	Oxidation of the deep big mantle wedge by recycled carbonates: Constraints from highly siderophile elements and osmium isotopes. Geochimica Et Cosmochimica Acta, 2021, 295, 207-223.	3.9	15
11	Oxidation state and metasomatism of the lithospheric mantle beneath the Rae Craton, Canada: strong gradients reflect craton formation and evolution. Scientific Reports, 2021, 11, 3684.	3.3	7
12	Plume-driven recratonization of deep continental lithospheric mantle. Nature, 2021, 592, 732-736.	27.8	57
13	Detrital chromites reveal Slave craton's missing komatiite. Geology, 2021, 49, 1079-1083.	4.4	9
14	Slab Transport of Fluids to Deep Focus Earthquake Depthsâ€"Thermal Modeling Constraints and Evidence From Diamonds. AGU Advances, 2021, 2, e2020AV000304.	5.4	35
15	Tungsten-182 evidence for an ancient kimberlite source. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	21
16	Age and provenance of the lithospheric mantle beneath the Chidliak kimberlite province, southern Baffin Island: Implications for the evolution of the North Atlantic Craton. Lithos, 2021, 390-391, 106124.	1.4	3
17	Fingerprinting the Cretaceous-Paleogene boundary impact with Zn isotopes. Nature Communications, 2021, 12, 4128.	12.8	4
18	The spatial and temporal evolution of primitive melt compositions within the Lac de Gras kimberlite field, Canada: Source evolution vs lithospheric mantle assimilation. Lithos, 2021, 392-393, 106142.	1.4	17

#	Article	IF	Citations
19	Deep continental roots and cratons. Nature, 2021, 596, 199-210.	27.8	93
20	Modification of Lithospheric Mantle by Melts/Fluids With Different Sulfur Fugacities During the Wilson Cycle: Insights From Lesvos and Global Ophiolitic Peridotites. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022445.	3.4	9
21	Heat Generation in Cratonic Mantle Rootsâ€"New Trace Element Constraints From Mantle Xenoliths and Implications for Cratonic Geotherms. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009691.	2.5	5
22	Extent and age of Mesoarchean components in the Nagssugtoqidian orogen, West Greenland: Implications for tectonic environments and crust building in cratonic orogenic belts. Lithos, 2021, 396-397, 106182.	1.4	5
23	The komatiite-mantle platinum-group element paradox. Geochimica Et Cosmochimica Acta, 2021, 313, 214-242.	3.9	12
24	Osmium isotopes in peridotite xenoliths reveal major mid-Proterozoic lithosphere formation under the Transantarctic Mountains. Geochimica Et Cosmochimica Acta, 2021, 312, 25-43.	3.9	6
25	A latest Pleistocene and Holocene composite tephrostratigraphic framework for northeastern North America. Quaternary Science Reviews, 2021, 272, 107242.	3.0	9
26	Pyroxenitic magma conduits (ca. 1.86ÂGa) in Wopmay orogen and slave craton: Petrogenetic constraints from whole rock and mineral chemistry. Lithos, 2020, 354-355, 105220.	1.4	1
27	Dating post-Archean lithospheric mantle: Insights from Re-Os and Lu-Hf isotopic systematics of the Cameroon Volcanic Line peridotites. Geochimica Et Cosmochimica Acta, 2020, 278, 177-198.	3.9	19
28	Element and isotopic signature of re-fertilized mantle peridotite as determined by nanopowder and olivine LA-ICPMS analyses. Chemical Geology, 2020, 536, 119464.	3.3	7
29	A Palaeoproterozoic diamond-bearing lithospheric mantle root beneath the Archean Sask Craton, Canada. Lithos, 2020, 356-357, 105301.	1.4	10
30	Architecture and evolution of the lithospheric roots beneath circum-cratonic orogenic belts–The Xing'an Mongolia Orogenic Belt and its relationship with adjacent North China and Siberian cratonic roots. Lithos, 2020, 376-377, 105798.	1.4	3
31	The lithospheric-to-lower-mantle carbon cycle recorded in superdeep diamonds. Nature, 2020, 585, 234-238.	27.8	27
32	A Fractional Crystallization Link between Komatiites, Basalts, and Dunites of the Palaeoproterozoic Winnipegosis Komatiite Belt, Manitoba, Canada. Journal of Petrology, 2020, 61, .	2.8	13
33	Tungsten Isotope Composition of Archean Crustal Reservoirs and Implications for Terrestrial μ ¹⁸² W Evolution. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009155.	2.5	20
34	Deep carbon through time: Earth's diamond record and its implications for carbon cycling and fluid speciation in the mantle. Geochimica Et Cosmochimica Acta, 2020, 275, 99-122.	3.9	26
35	Kimberlite genesis from a common carbonate-rich primary melt modified by lithospheric mantle assimilation. Science Advances, 2020, 6, eaaz0424.	10.3	72
36	The complex life cycle of oceanic lithosphere: A study of Yarlung-Zangbo ophiolitic peridotites, Tibet. Geochimica Et Cosmochimica Acta, 2020, 277, 175-191.	3.9	41

#	Article	IF	CITATIONS
37	Heterogeneous kimberlite metasomatism revealed from a combined He-Os isotope study of Siberian megacrystalline dunite xenoliths. Geochimica Et Cosmochimica Acta, 2019, 266, 220-236.	3.9	8
38	Primordial and recycled helium isotope signatures in the mantle transition zone. Science, 2019, 365, 692-694.	12.6	21
39	The evolution of the Kaapvaal craton: A multi-isotopic perspective from lithospheric peridotites from Finsch diamond mine. Precambrian Research, 2019, 331, 105380.	2.7	9
40	Implications for the origins of Eoarchean ultramafic rocks of the North Atlantic Craton: a study of the Tussaap Ultramafic complex, Itsaq Gneiss complex, southern West Greenland. Contributions To Mineralogy and Petrology, 2019, 174, 1.	3.1	18
41	Diamonds and the Mantle Geodynamics of Carbon. , 2019, , 89-128.		16
42	Secular mantle oxidation across the Archean-Proterozoic boundary: Evidence from V partitioning in komatiites and picrites. Geochimica Et Cosmochimica Acta, 2019, 250, 49-75.	3.9	88
43	Trace element analysis of high-Mg olivine by LA-ICP-MS – Characterization of natural olivine standards for matrix-matched calibration and application to mantle peridotites. Chemical Geology, 2019, 524, 136-157.	3.3	44
44	Dating mantle peridotites using Re-Os isotopes: The complex message from whole rocks, base metal sulfides, and platinum group minerals. American Mineralogist, 2019, 104, 165-189.	1.9	37
45	Diamond isotope compositions indicate altered igneous oceanic crust dominates deep carbon recycling. Earth and Planetary Science Letters, 2019, 516, 190-201.	4.4	53
46	The Metasomatized Mantle beneath the North Atlantic Craton: Insights from Peridotite Xenoliths of the Chidliak Kimberlite Province (NE Canada). Journal of Petrology, 2019, 60, 1991-2024.	2.8	14
47	Kimberlites: From Deep Earth to Diamond Mines. Elements, 2019, 15, 377-380.	0.5	55
48	Kimberlites reveal 2.5-billion-year evolution of a deep, isolated mantle reservoir. Nature, 2019, 573, 578-581.	27.8	64
49	Kimberlites as Geochemical Probes of Earth's Mantle. Elements, 2019, 15, 387-392.	0.5	66
50	Dating Kimberlites: Methods and Emplacement Patterns Through Time. Elements, 2019, 15, 399-404.	0.5	33
51	Continent stabilisation by lateral accretion of subduction zone-processed depleted mantle residues; insights from Zealandia. Earth and Planetary Science Letters, 2019, 507, 175-186.	4.4	50
52	CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle. Nature, 2018, 555, 237-241.	27.8	123
53	A reconnaissance view of tungsten reservoirs in some crustal and mantle rocks: Implications for interpreting W isotopic compositions and crust-mantle W cycling. Geochimica Et Cosmochimica Acta, 2018, 223, 300-318.	3.9	16
54	Petrogenesis and tectonics of the Acasta Gneiss Complex derived from integrated petrology and 142Nd and 182W extinct nuclide-geochemistry. Earth and Planetary Science Letters, 2018, 494, 12-22.	4.4	53

#	Article	IF	CITATIONS
55	Making Archean cratonic roots by lateral compression: A two-stage thickening and stabilization model. Tectonophysics, 2018, 746, 562-571.	2.2	40
56	Diamond brecciation and annealing accompanying major metasomatism in eclogite xenoliths from the Sask Craton, Canada. Mineralogy and Petrology, 2018, 112, 311-323.	1.1	9
57	Mantle composition, age and geotherm beneath the Darby kimberlite field, west central Rae Craton. Mineralogy and Petrology, 2018, 112, 57-70.	1.1	9
58	Diamondiferous Paleoproterozoic mantle roots beneath Arctic Canada: A study of mantle xenoliths from Parry Peninsula and Central Victoria Island. Geochimica Et Cosmochimica Acta, 2018, 239, 284-311.	3.9	14
59	Timing and origin of magmatism in the Sverdrup Basin, Northern Canadaâ€"Implications for lithospheric evolution in the High Arctic Large Igneous Province (HALIP). Tectonophysics, 2018, 742-743, 50-65.	2.2	42
60	Eclogites and garnet pyroxenites from Kimberley, Kaapvaal craton, South Africa: their diverse origins and complex metasomatic signatures. Mineralogy and Petrology, 2018, 112, 43-56.	1.1	11
61	Cr-rich megacrysts of clinopyroxene and garnet from Lac de Gras kimberlites, Slave Craton, Canada – implications for the origin of clinopyroxene and garnet in cratonic lherzolites. Mineralogy and Petrology, 2018, 112, 583-596.	1.1	35
62	Mesoarchean melting and Neoarchean to Paleoproterozoic metasomatism during the formation of the cratonic mantle keel beneath West Greenland. Geochimica Et Cosmochimica Acta, 2017, 203, 37-53.	3.9	12
63	The geological record of base metal sulfides in the cratonic mantle: A microscale 187 Os/ 188 Os study of peridotite xenoliths from Somerset Island, Rae Craton (Canada). Geochimica Et Cosmochimica Acta, 2017, 216, 264-285.	3.9	30
64	Fluid-induced transition from banded kyanite- to bimineralic eclogite and implications for the evolution of cratons. Geochimica Et Cosmochimica Acta, 2017, 207, 19-42.	3.9	10
65	Rhenium-osmium isotopes and highly siderophile elements in ultramafic rocks from the Eoarchean Saglek Block, northern Labrador, Canada: implications for Archean mantle evolution. Geochimica Et Cosmochimica Acta, 2017, 216, 286-311.	3.9	20
66	Age, origin, and thermal evolution of the ultra-fresh ~ 1.9 Ga Winnipegosis Komatiites, Manitoba, Canada. Lithos, 2017, 268-271, 114-130.	1.4	22
67	Construction and destruction of some North American cratons. Tectonophysics, 2017, 694, 464-485.	2.2	38
68	The transition zone as a host for recycled volatiles: Evidence from nitrogen and carbon isotopes in ultra-deep diamonds from Monastery and Jagersfontein (South Africa). Chemical Geology, 2017, 466, 733-749.	3.3	17
69	Evidence for H2O-bearing fluids in the lower mantle from diamond inclusion. Lithos, 2016, 265, 237-243.	1.4	57
70	No evidence for Hadean continental crust within Earth's oldest evolved rock unit. Nature Geoscience, 2016, 9, 777-780.	12.9	99
71	Widespread tungsten isotope anomalies and W mobility in crustal and mantle rocks of the Eoarchean Saglek Block, northern Labrador, Canada: Implications for early Earth processes and W recycling. Earth and Planetary Science Letters, 2016, 448, 13-23.	4.4	51
72	Kyanite/corundum eclogites from the Kaapvaal Craton: subducted troctolites and layered gabbros from the Mid- to Early Archean. Contributions To Mineralogy and Petrology, 2016, 171, 1.	3.1	23

#	Article	IF	CITATIONS
73	Age and evolution of the deep continental root beneath the central Rae craton, northern Canada. Precambrian Research, 2016, 272, 168-184.	2.7	29
74	Distribution and Processing of Highly Siderophile Elements in Cratonic Mantle Lithosphere. Reviews in Mineralogy and Geochemistry, 2016, 81, 239-304.	4.8	76
75	In situ oxygen-isotope, major-, and trace-element constraints on the metasomatic modification and crustal origin of a diamondiferous eclogite from Roberts Victor, Kaapvaal Craton. Geochimica Et Cosmochimica Acta, 2016, 174, 345-359.	3.9	25
76	Investigating metasomatic effects on the 1870s isotopic signature: A case study on micrometric base metal sulphides in metasomatised peridotite from the Letlhakane kimberlite (Botswana). Lithos, 2015, 232, 35-48.	1.4	23
77	The longevity of Archean mantle residues in the convecting upper mantle and their role in young continent formation. Earth and Planetary Science Letters, 2015, 424, 109-118.	4.4	64
78	Plume impingement on the Siberian SCLM: Evidence from Re–Os isotope systematics. Lithos, 2015, 218-219, 141-154.	1.4	32
79	Duration and periodicity of kimberlite volcanic activity in the Lac de Gras kimberlite field, Canada and some recommendations for kimberlite geochronology. Lithos, 2015, 218-219, 155-166.	1.4	48
80	The thinning of subcontinental lithosphere: The roles of plume impact and metasomatic weakening. Geochemistry, Geophysics, Geosystems, 2015, 16, 1156-1171.	2.5	65
81	Significance of the whole rock Re–Os ages in cryptically and modally metasomatised cratonic peridotites: Constraints from HSE–Se–Te systematics. Geochimica Et Cosmochimica Acta, 2015, 164, 441-463.	3.9	48
82	Precise Pb isotope ratio determination of picogram-size samples: A comparison between multiple Faraday collectors equipped with 1012Ω amplifiers and multiple ion counters. Chemical Geology, 2015, 395, 27-40.	3.3	19
83	Peridotites from Attawapiskat, Canada: Mesoproterozoic Reworking of Palaeoarchaean Lithospheric Mantle beneath the Northern Superior Superterrane. Journal of Petrology, 2014, 55, 1829-1863.	2.8	31
84	Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature, 2014, 507, 221-224.	27.8	613
85	The sources and time-integrated evolution of diamond-forming fluids – Trace elements and isotopic evidence. Geochimica Et Cosmochimica Acta, 2014, 125, 146-169.	3.9	44
86	Mantle Samples Included in Volcanic Rocks. , 2014, , 169-253.		40
87	The Formation and Evolution of Cratonic Mantle Lithosphere – Evidence from Mantle Xenoliths. , 2014, , 255-292.		80
88	Isotopic constraints on the nature and circulation of deep mantle C–H–O–N fluids: Carbon and nitrogen systematics within ultra-deep diamonds from Kankan (Guinea). Geochimica Et Cosmochimica Acta, 2014, 139, 26-46.	3.9	42
89	Rapid, precise and accurate Os isotope ratio measurements of nanogram to sub-nanogram amounts using multiple Faraday collectors and amplifiers equipped with 1012 Ω resistors by N-TIMS. Chemical Geology, 2014, 363, 301-311.	3.3	49
90	Fractionation of highly siderophile elements in refertilized mantle: Implications for the Os isotope composition of basalts. Earth and Planetary Science Letters, 2014, 400, 33-44.	4.4	29

#	Article	IF	Citations
91	Diamonds and the Geology of Mantle Carbon. Reviews in Mineralogy and Geochemistry, 2013, 75, 355-421.	4.8	360
92	The 190Pt–186Os decay system applied to dating platinum-group element mineralization of the Bushveld Complex, South Africa. Chemical Geology, 2012, 302-303, 48-60.	3.3	33
93	Inter-element fractionation of highly siderophile elements in the Tonga Arc due to flux melting of a depleted source. Geochimica Et Cosmochimica Acta, 2012, 89, 202-225.	3.9	89
94	Craton formation in Late Archean subduction zones revealed by first Greenland eclogites. Geology, 2011, 39, 1103-1106.	4.4	100
95	Ancient Os isotope signatures from the Ontong Java Plateau lithosphere: Tracing lithospheric accretion history. Earth and Planetary Science Letters, 2011, 301, 159-170.	4.4	56
96	Constraints on the depth and thermal history of cratonic lithosphere from peridotite xenoliths, xenocrysts and seismology. Lithos, 2011, 125, 729-742.	1.4	117
97	Application of the 190Pt-186Os Isotope System to Dating Platinum Mineralization and Ophiolite Formation: An Example from the Meratus Mountains, Borneo. Economic Geology, 2011, 106, 93-117.	3.8	44
98	A major element, PGE and Re–Os isotope study of Middle Atlas (Morocco) peridotite xenoliths: Evidence for coupled introduction of metasomatic sulphides and clinopyroxene. Lithos, 2010, 115, 15-26.	1.4	49
99	Age, Composition and Thermal Characteristics of South African Off-Craton Mantle Lithosphere: Evidence for a Multi-Stage History. Journal of Petrology, 2010, 51, 1849-1890.	2.8	71
100	Mixed fluid sources involved in diamond growth constrained by Sr–Nd–Pb–C–N isotopes and trace elements. Earth and Planetary Science Letters, 2010, 289, 123-133.	4.4	72
101	Formation of the North Atlantic Craton: Timing and mechanisms constrained from Re–Os isotope and PGE data of peridotite xenoliths from S.W. Greenland. Chemical Geology, 2010, 276, 166-187.	3.3	79
102	Quantitative analysis of trace element concentrations in some gem-quality diamonds. Journal of Physics Condensed Matter, 2009, 21, 364207.	1.8	35
103	The lithospheric mantle below southern West Greenland: A geothermobarometric approach to diamond potential and mantle stratigraphy. Lithos, 2009, 112, 1155-1166.	1.4	51
104	Extremely depleted lithospheric mantle and diamonds beneath the southern Zimbabwe Craton. Lithos, 2009, 112, 1120-1132.	1.4	61
105	An integrated petrological, geochemical and Re–Os isotope study of peridotite xenoliths from the Argyle lamproite, Western Australia and implications for cratonic diamond occurrences. Lithos, 2009, 112, 1096-1108.	1.4	65
106	Geochemistry of hypabyssal kimberlites from Lac de Gras, Canada: Comparisons to a global database and applications to the parent magma problem. Lithos, 2009, 112, 236-248.	1.4	211
107	Osmium isotopes in Baffin Island and West Greenland picrites: Implications for the 1870s/1880s composition of the convecting mantle and the nature of high 3He/4He mantle. Earth and Planetary Science Letters, 2009, 278, 267-277.	4.4	56
108	The U, Th and Pb elemental and isotope compositions of mantle clinopyroxenes and their grain boundary contamination derived from leaching and digestion experiments. Geochimica Et Cosmochimica Acta, 2009, 73, 469-488.	3.9	18

#	Article	IF	CITATIONS
109	Highly siderophile element behaviour accompanying subduction of oceanic crust: Whole rock and mineral-scale insights from a high-pressure terrain. Geochimica Et Cosmochimica Acta, 2009, 73, 1394-1416.	3.9	86
110	Origin of cratonic lithospheric mantle roots: A geochemical study of peridotites from the North Atlantic Craton, West Greenland. Earth and Planetary Science Letters, 2008, 274, 24-33.	4.4	91
111	Precise and accurate 1860s/1880s and 1870s/1880s measurements by multi-collector plasma ionisation mass spectrometry (MC-ICP-MS) part I: Solution analyses. Chemical Geology, 2008, 248, 363-393.	3.3	58
112	Extreme platinum-group element fractionation and variable Os isotope compositions in Philippine Sea Plate basalts: Tracing mantle source heterogeneity. Chemical Geology, 2008, 248, 213-238.	3.3	63
113	Precise and accurate 186Os/188Os and 187Os/188Os measurements by Multi-collector Plasma Ionisation Mass Spectrometry, part II: Laser ablation and its application to single-grain Pt–Os and Re–Os geochronology. Chemical Geology, 2008, 248, 394-426.	3.3	57
114	184Os/188Os and 186Os/188Os measurements by Negative Thermal Ionisation Mass Spectrometry (N-TIMS): Effects of interfering element and mass fractionation corrections on data accuracy and precision. Chemical Geology, 2008, 248, 342-362.	3.3	109
115	Rhenium-Osmium Isotope and Platinum-Group Element Constraints on the Origin and Evolution of the 1{middle dot}27 Ga Muskox Layered Intrusion. Journal of Petrology, 2008, 49, 1255-1295.	2.8	64
116	Enriched Pt-Re-Os Isotope Systematics in Plume Lavas Explained by Metasomatic Sulfides. Science, 2008, 319, 453-456.	12.6	116
117	Formation of Archaean continental lithosphere and its diamonds: the root of the problem. Journal of the Geological Society, 2008, 165, 895-914.	2.1	240
118	The Origin and Evolution of the Kaapvaal Cratonic Lithospheric Mantle. Journal of Petrology, 2007, 48, 589-625.	2.8	273
119	A link between large mantle melting events and continent growth seen in osmium isotopes. Nature, 2007, 449, 202-205.	27.8	216
120	A routine method for the dissolution of geological samples for the analysis of REE and trace elements via ICP-MS. Special Publication - Royal Society of Chemistry, 2007, , 221-230.	0.0	28
121	Physical, chemical, and chronological characteristics of continental mantle. Reviews of Geophysics, 2005, 43, .	23.0	408
122	Re-Os and Lu-Hf Isotope Constraints on the Origin and Age of Pyroxenites from the Beni Bousera Peridotite Massif: Implications for Mixed Peridotite-Pyroxenite Mantle Sources. Journal of Petrology, 2004, 45, 439-455.	2.8	157
123	Re–Os isotope systematics and platinum group element fractionation during mantle melt extraction: a study of massif and xenolith peridotite suites. Chemical Geology, 2004, 208, 29-59.	3.3	290
124	Garnet lherzolites from Louwrensia, Namibia: bulk composition and P/T relationsâ~†. Lithos, 2004, 77, 573-592.	1.4	70
125	Mantle Samples Included in Volcanic Rocks: Xenoliths and Diamonds. , 2003, , 171-275.		259
126	The continental lithospheric mantle: characteristics and significance as a mantle reservoir. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2002, 360, 2383-2410.	3.4	83

#	Article	lF	CITATIONS
127	Lithospheric mantle evolution of the Kaapvaal Craton: A Re-Os isotope study of peridotite xenoliths from Lesotho kimberlites. Geophysical Research Letters, 2001, 28, 2505-2508.	4.0	72
128	Archean emplacement of eclogitic components into the lithospheric mantle during formation of the Kaapvaal Craton. Geophysical Research Letters, 2001, 28, 2509-2512.	4.0	133
129	Is Iceland underlain by a plume in the lower mantle? SeismologyÂand helium isotopes. Geophysical Journal International, 2001, 145, F1-F5.	2.4	39
130	Solvent extraction/anion exchange separation and determination of PGEs (Os, Ir, Pt, Pd, Ru) and Re–Os isotopes in geological samples by isotope dilution ICP-MS. Chemical Geology, 2000, 165, 87-107.	3.3	265
131	The age of continental roots. Lithos, 1999, 48, 171-194.	1.4	260
132	Rapid eruption of Skye lavas inferred from precise U–Pb and Ar–Ar dating of the Rum and Cuillin plutonic complexes. Nature, 1998, 394, 260-263.	27.8	132
133	Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contributions To Mineralogy and Petrology, 1997, 128, 228-246.	3.1	370
134	Archaean Re–Os age for Siberian eclogites and constraints on Archaean tectonics. Nature, 1995, 374, 711-713.	27.8	188
135	Stabilisation of Archaean lithospheric mantle: A ReOs isotope study of peridotite xenoliths from the Kaapvaal craton. Earth and Planetary Science Letters, 1995, 134, 341-357.	4.4	400
136	Geochemical Constraints on the Petrogenesis of Diamond Facies Pyroxenites from the Beni Bousera Peridotite Massif, North Morocco. Journal of Petrology, 1993, 34, 125-172.	2.8	200
137	An oxygen isotope test for the origin of Archean mantle roots. Geochemical Perspectives Letters, 0, , $6-10$.	5.0	21
138	Hafnium isotopes in zircons document the gradual onset of mobile-lid tectonics. Geochemical Perspectives Letters, 0, , 1-6.	5.0	53