
James E Klaunig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4663064/publications.pdf Version: 2024-02-01

IAMES E KLAUNIC

#	Article	IF	CITATIONS
1	Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis, 1989, 10, 1003-1008.	2.8	1,543
2	The Role of Oxidative Stress in Carcinogenesis. Annual Review of Pharmacology and Toxicology, 2004, 44, 239-267.	9.4	1,312
3	Oxidative Stress and Oxidative Damage in Carcinogenesis. Toxicologic Pathology, 2010, 38, 96-109.	1.8	758
4	Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose–response framework. Toxicology and Applied Pharmacology, 2007, 222, 122-128.	2.8	631
5	PPARα Agonist-Induced Rodent Tumors: Modes of Action and Human Relevance. Critical Reviews in Toxicology, 2003, 33, 655-780.	3.9	549
6	Mouse liver cell culture. In Vitro, 1981, 17, 913-925.	1.2	377
7	Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicology and Applied Pharmacology, 2011, 254, 86-99.	2.8	355
8	Oxidative Stress and Cancer. Current Pharmaceutical Design, 2019, 24, 4771-4778.	1.9	331
9	Role of the Kupffer Cell in Mediating Hepatic Toxicity and Carcinogenesis. Toxicological Sciences, 2006, 96, 2-15.	3.1	269
10	Mode of Action in Relevance of Rodent Liver Tumors to Human Cancer Risk. Toxicological Sciences, 2006, 89, 51-56.	3.1	246
11	Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis, 2015, 36, S254-S296.	2.8	239
12	Mode of action framework analysis for receptor-mediated toxicity: The peroxisome proliferator-activated receptor alpha (PPAR α) as a case study. Critical Reviews in Toxicology, 2014, 44, 1-49.	3.9	191
13	Nutritional model of steatohepatitis and metabolic syndrome in the Ossabaw miniature swine. Hepatology, 2009, 50, 56-67.	7.3	176
14	Overview: Using Mode of Action and Life Stage Information to Evaluate the Human Relevance of Animal Toxicity Data. Critical Reviews in Toxicology, 2005, 35, 663-672.	3.9	166
15	Role of the Mitochondrial Membrane Permeability Transition (MPT) in Rotenone-Induced Apoptosis in Liver Cells. Toxicological Sciences, 2000, 53, 340-351.	3.1	160
16	Chemical, Oncogene and Growth Factor Inhibition of Gap Junctional Intercellular Communication: An Integrative Hypothesis of Carcinogenesis. Pathobiology, 1990, 58, 265-278.	3.8	153
17	Evaluating the Human Relevance of Chemically Induced Animal Tumors. Toxicological Sciences, 2004, 78, 181-186.	3.1	146
18	Effect of transport stress on respiratory disease, serum antioxidant status, and serum concentrations of lipid peroxidation biomarkers in beef cattle. American Journal of Veterinary Research, 2004, 65, 860-864.	0.6	132

#	Article	IF	CITATIONS
19	Alterations in brain structure and function in breast cancer survivors: effect of post-chemotherapy interval and relation to oxidative DNA damage. Breast Cancer Research and Treatment, 2013, 137, 493-502.	2.5	119
20	The PPARα-dependent rodent liver tumor response is not relevant to humans: addressing misconceptions. Archives of Toxicology, 2018, 92, 83-119.	4.2	112
21	Novel mechanisms in chemically induced hepatotoxicity 1. FASEB Journal, 1994, 8, 1285-1295.	0.5	108
22	Linear low-dose extrapolation for noncancer health effects is the exception, not the rule. Critical Reviews in Toxicology, 2011, 41, 1-19.	3.9	108
23	Inhibition of cellular transformation by berry extracts. Carcinogenesis, 2001, 22, 351-356.	2.8	103
24	The Role of Oxidative Stress in Chemical Carcinogenesis. Environmental Health Perspectives, 1998, 106, 289.	6.0	101
25	Chemopreventive Effects of Green and Black Tea on Pulmonary and Hepatic Carcinogenesis. Fundamental and Applied Toxicology, 1996, 29, 244-250.	1.8	93
26	Acrylamide-Induced Cellular Transformation. Toxicological Sciences, 2002, 65, 177-183.	3.1	93
27	Acrylamide Carcinogenicity. Journal of Agricultural and Food Chemistry, 2008, 56, 5984-5988.	5.2	90
28	Hemangiosarcoma in Rodents: Mode-of-Action Evaluation and Human Relevance. Toxicological Sciences, 2009, 111, 4-18.	3.1	90
29	Epigenetic mechanisms of chemical carcinogenesis. Human and Experimental Toxicology, 2000, 19, 543-555.	2.2	89
30	Effects of Di-isononyl Phthalate, Di-2-ethylhexyl Phthalate, and Clofibrate in Cynomolgus Monkeys. Toxicological Sciences, 2000, 56, 181-188.	3.1	87
31	The Human Relevance of Information on Carcinogenic Modes of Action: Overview. Critical Reviews in Toxicology, 2003, 33, 581-589.	3.9	84
32	Mode of Action analysis of perfluorooctanoic acid (PFOA) tumorigenicity and Human Relevance. Reproductive Toxicology, 2012, 33, 410-418.	2.9	84
33	Studies on the specificity of the effects of oxygen metabolites on cardiac sodium pump. Journal of Molecular and Cellular Cardiology, 1990, 22, 911-920.	1.9	82
34	The Role of Oxidative Stress in Indium Phosphide-Induced Lung Carcinogenesis in Rats. Toxicological Sciences, 2001, 64, 28-40.	3.1	82
35	Conditional β-catenin loss in mice promotes chemical hepatocarcinogenesis: Role of oxidative stress and platelet-derived growth factor receptor α/phosphoinositide 3-kinase signaling. Hepatology, 2010, 52, 954-965.	7.3	82
36	A randomized placebo-controlled pilot study of N-acetylcysteine in youth with autism spectrum disorder. Molecular Autism, 2016, 7, 26.	4.9	79

James E Klaunig

#	Article	IF	CITATIONS
37	The Effect of Tea Consumption on Oxidative Stress in Smokers and Nonsmokers. Proceedings of the Society for Experimental Biology and Medicine, 1999, 220, 249-254.	1.8	77
38	Support of Science-Based Decisions Concerning the Evaluation of the Toxicology of Mixtures: A New Beginning. Regulatory Toxicology and Pharmacology, 2002, 36, 34-39.	2.7	73
39	A water soluble parthenolide analog suppresses <i>in vivo</i> tumor growth of two tobaccoâ€associated cancers, lung and bladder cancer, by targeting NFâ€₽B and generating reactive oxygen species. International Journal of Cancer, 2011, 128, 2481-2494.	5.1	72
40	Alkaline Comet Assay for Assessing DNA Damage in Individual Cells. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2015, 65, 3.12.1-3.12.11.	1.1	72
41	CANCER BIOLOGY: Dose dependence of phenobarbital promotion of preneoplastic hepatic lesions in F344 rats and B6C3F1 mice: effects on DNA synthesis and apoptosis. Carcinogenesis, 1996, 17, 947-954.	2.8	71
42	Oxidative stress in carcinogenesis. Current Opinion in Toxicology, 2018, 7, 116-121.	5.0	69
43	Chemopreventive effects of green tea components on hepatic carcinogenesis. Preventive Medicine, 1992, 21, 510-519.	3.4	65
44	Inhibition of mouse hepatocyte intercellular communication by paraquat-generated oxygen free radicals. Toxicology and Applied Pharmacology, 1988, 94, 427-436.	2.8	63
45	Induction of Oxidative Stress in Rat Brain by Acrylonitrile (ACN). Toxicological Sciences, 1998, 46, 333-341.	3.1	63
46	Infection of rat liver epithelial cells with v-Ha-ras: Correlation between oncogene expression, gap junctional communication, and tumorigenicity. Molecular Carcinogenesis, 1990, 3, 54-67.	2.7	62
47	Evaluation of the Chronic Toxicity and Carcinogenicity of Perfluorohexanoic Acid (PFHxA) in Sprague-Dawley Rats. Toxicologic Pathology, 2015, 43, 209-220.	1.8	62
48	Strain and species effects on the inhibition of hepatocyte intercellular communication by liver tumor promoters. Cancer Letters, 1987, 36, 161-168.	7.2	61
49	Minocycline blocks 6-hydroxydopamine-induced neurotoxicity and free radical production in rat cerebellar granule neurons. Life Sciences, 2003, 72, 1635-1641.	4.3	61
50	Subchronic Effects of Dieldrin and Phenobarbital on Hepatic DNA Synthesis in Mice and Rats. Fundamental and Applied Toxicology, 1996, 29, 219-228.	1.8	60
51	Induction of oxidative stress and oxidative damage in rat glial cells by acrylonitrile. Carcinogenesis, 1999, 20, 1555-1560.	2.8	59
52	Comparative effects of phenobarbital, DDT, and lindane on mouse hepatocyte gap junctional intercellular communication. Toxicology and Applied Pharmacology, 1990, 102, 553-563.	2.8	58
53	Reversal ofras-induced inhibition of gap-junctional intercellular communication, transformation, and tumorigenesis by lovastatin. Molecular Carcinogenesis, 1993, 7, 50-59.	2.7	54
54	Role of Oxidative Stress in the Selective Toxicity of Dieldrin in the Mouse Liver. Toxicology and Applied Pharmacology, 1998, 150, 301-309.	2.8	54

#	Article	IF	CITATIONS
55	Effects of tumor promoters, genotoxic carcinogens and hepatocytotoxins on mouse hepatocyte intercellular communication. Cell Biology and Toxicology, 1986, 2, 469-483.	5.3	52
56	Antioxidant prevention of tumor promoter induced inhibition of mouse hepatocyte intercellular communication. Cancer Letters, 1986, 33, 137-150.	7.2	51
57	Human relevance of rodent liver tumors: Key insights from a Toxicology Forum workshop on nongenotoxic modes of action. Regulatory Toxicology and Pharmacology, 2018, 92, 1-7.	2.7	50
58	Toxicology of decamethylcyclopentasiloxane (D5). Regulatory Toxicology and Pharmacology, 2016, 74, S67-S76.	2.7	49
59	Inhibition of gap junctional intercellular communication and malignant transformation of rat liver epithelial cells by neu oncogene. Carcinogenesis, 1995, 16, 311-317.	2.8	48
60	Inhibition of gap junctional intercellular communication by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in rat hepatocytes. Carcinogenesis, 1995, 16, 2321-2326.	2.8	48
61	Monograph: Reassessment of human cancer risk of aldrin/dieldrin. Toxicology Letters, 1999, 109, 123-186.	0.8	48
62	Inhibition of hepatocyte gap junctional intercellular communication by endosulfan, chlordane and heptachlor. Carcinogenesis, 1990, 11, 1097-1101.	2.8	46
63	Effects of culture duration on hydrogen peroxide-induced hepatocyte toxicity. Toxicology and Applied Pharmacology, 1989, 100, 451-464.	2.8	45
64	Effects of Di-2-Ethylhexyl Phthalate (DEHP) on Gap-Junctional Intercellular Communication (GJIC), DNA Synthesis, and Peroxisomal Beta Oxidation (PBOX) in Rat, Mouse, and Hamster Liver. Toxicological Sciences, 2000, 56, 73-85.	3.1	45
65	Antioxidant Vitamin C Prevents Decline in Endothelial Function during Sitting. Medical Science Monitor, 2015, 21, 1015-1021.	1.1	44
66	COMPARATIVE EFFECTS OF PHTHALATE MONOESTERS ON GAP JUNCTIONAL INTERCELLULAR COMMUNICATION AND PEROXISOME PROLIFERATION IN RODENT AND PRIMATE HEPATOCYTES. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2002, 65, 569-588.	2.3	42
67	Assessment of the Mode of Action Underlying the Effects of GenX in Mouse Liver and Implications for Assessing Human Health Risks. Toxicologic Pathology, 2020, 48, 494-508.	1.8	40
68	Reversibility and Persistence of Di-2-ethylhexyl Phthalate (DEHP)- and Phenobarbital-Induced Hepatocellular Changes in Rodents. Toxicological Sciences, 2001, 64, 192-199.	3.1	39
69	Subchronic acrylamide treatment induces a tissue-specific increase in DNA synthesis in the rat. Toxicology Letters, 2004, 154, 95-103.	0.8	39
70	Proposed mode of action of benzene-induced leukemia: Interpreting available data and identifying critical data gaps for risk assessment. Chemico-Biological Interactions, 2010, 184, 279-285.	4.0	39
71	Acrylonitrile-Induced Oxidative Stress and Oxidative DNA Damage in Male Sprague-Dawley Rats. Toxicological Sciences, 2009, 111, 64-71.	3.1	38
72	Modulation of xenobiotic nuclear receptors in high-fat diet induced non-alcoholic fatty liver disease. Toxicology, 2018, 410, 199-213.	4.2	38

#	Article	lF	CITATIONS
73	Evaluation of amiodarone free radical toxicity in rat hepatocytes. Toxicology Letters, 1991, 56, 117-126.	0.8	37
74	Inhibition of tumor promotion and hepatocellular growth by dietary restriction in mice. Carcinogenesis, 1996, 17, 1657-1664.	2.8	37
75	Selective dieldrin promotion of hepatic focal lesions in mice. Carcinogenesis, 1996, 17, 1243-1250.	2.8	37
76	Mechanisms of Acrylamide Induced Rodent Carcinogenesis. , 2005, 561, 49-62.		37
77	Dose-Related Induction of Hepatic Preneoplastic Lesions by Diethylnitrosamine in C57BL/6 Mice. Toxicologic Pathology, 2011, 39, 776-786.	1.8	37
78	The effects of perfluorooctanoate on high fat diet induced non-alcoholic fatty liver disease in mice. Toxicology, 2019, 416, 1-14.	4.2	37
79	Effects of trichloroethylene and its metabolites on rodent hepatocyte intercellular communication. Toxicology and Applied Pharmacology, 1989, 99, 454-465.	2.8	36
80	Vitamin E Modulation of Hepatic Focal Lesion Growth in Mice1. Toxicology and Applied Pharmacology, 1997, 143, 380-387.	2.8	36
81	Autophagy plays a protective role in Mn-induced toxicity in PC12 cells. Toxicology, 2018, 394, 45-53.	4.2	36
82	A comparison of the lung adenoma response in strain A/J mice after intraperitoneal and oral administration of carcinogens. Toxicology and Applied Pharmacology, 1984, 72, 313-323.	2.8	35
83	Cytotoxicity of halogenated alkanes in primary cultures of rat hepatocytes from normal, partial hepatectomized, and preneoplastic/neoplastic liver. Toxicology and Applied Pharmacology, 1985, 80, 274-283.	2.8	35
84	Effect of dietary antioxidants on dieldrin-induced hepatotoxicity in mice. Toxicology Letters, 1995, 75, 177-183.	0.8	34
85	The Effect of Tea Consumption on Oxidative Stress in Smokers and Nonsmokers. Experimental Biology and Medicine, 1999, 220, 249-254.	2.4	34
86	Hepatic Effects of 2-Butoxyethanol in Rodents. Toxicological Sciences, 2002, 70, 252-260.	3.1	34
87	Selective resistance to cytotoxic agents in hepatocytes isolated from partially hepatectomized and neoplastic mouse liver. Cancer Letters, 1985, 26, 295-301.	7.2	33
88	Inhibition of WY-14,643 induced hepatic lesion growth in mice by rotenone. Carcinogenesis, 1997, 18, 1511-1519.	2.8	32
89	The potential for chemical mixtures from the environment to enable the cancer hallmark of sustained proliferative signalling. Carcinogenesis, 2015, 36, S38-S60.	2.8	32
90	Phenobarbital promotion in diethylnitrosamine-initiated infant B6C3F1 mice: influence of gender. Carcinogenesis, 1989, 10, 609-612.	2.8	31

#	Article	IF	CITATIONS
91	A Multiple-Site Laboratory Evaluation of Three On-Site Urinalysis Drug-Testing Devices. Journal of Analytical Toxicology, 1998, 22, 493-502.	2.8	31
92	Comparative in Vivo Hepatic Effects of Di-Isononyl Phthalate (DINP) and Related C7-C11 Dialkyl Phthalates on Gap Junctional Intercellular Communication (GJIC), Peroxisomal Beta-Oxidation (PBOX), and DNA Synthesis in Rat and Mouse Liver. Toxicological Sciences, 2000, 54, 312-321.	3.1	31
93	Mechanisms of 2-Butoxyethanol–Induced Hemangiosarcomas. Toxicological Sciences, 2006, 92, 378-386.	3.1	31
94	Evaluating Uncertainty to Strengthen Epidemiologic Data for Use in Human Health Risk Assessments. Environmental Health Perspectives, 2014, 122, 1160-1165.	6.0	31
95	Modification of gap junctional intercellular communication by changes in extracellular pH in Syrian hamster embryo cells. Carcinogenesis, 1990, 11, 909-913.	2.8	30
96	Morphological Transformation by 8-Hydroxy-2'-deoxyguanosine in Syrian Hamster Embryo (SHE) Cells. Toxicological Sciences, 2000, 56, 303-312.	3.1	30
97	Investigation of the mechanism of triclosan induced mouse liver tumors. Regulatory Toxicology and Pharmacology, 2017, 86, 137-147.	2.7	30
98	Amiodarone- and desethylamiodarone-induced myelinoid inclusion bodies and toxicity cultured rat hepatocytes. Hepatology, 1990, 11, 81-92.	7.3	29
99	Acrylonitrile-induced morphological transformation in Syrian hamster embryo cells. Carcinogenesis, 2000, 21, 727-733.	2.8	29
100	Acrylonitrile-induced oxidative DNA damage in rat astrocytes. Environmental and Molecular Mutagenesis, 2006, 47, 631-638.	2.2	29
101	Indicators of oxidative stress and apoptosis in mouse whole lung and Clara cells following exposure to styrene and its metabolites. Toxicology, 2009, 264, 171-178.	4.2	29
102	Oxidative Stress in Chronic Liver Disease: Relationship Between Peripheral and Hepatic Measurements. American Journal of the Medical Sciences, 2011, 342, 314-317.	1.1	29
103	Comparison of glucocorticoid-mediated changes in the expression and function of rat hepatocyte gap junctional proteins. Carcinogenesis, 1994, 15, 1753-1757.	2.8	28
104	Modeling of xenobiotic transport and metabolism in virtual hepatic lobule models. PLoS ONE, 2018, 13, e0198060.	2.5	28
105	Gamma glutamyl transpeptidase in safrole-induced, presumptive premalignant mouse hepatocytes. Carcinogenesis, 1980, 1, 151-156.	2.8	27
106	CANCER BIOLOGY: Reversibility of promoter induced hepatic focal lesion growth in mice. Carcinogenesis, 1996, 17, 1403-1409.	2.8	27
107	Biological relevance of decamethylcyclopentasiloxane (D5) induced rat uterine endometrial adenocarcinoma tumorigenesis: Mode of action and relevance to humans. Regulatory Toxicology and Pharmacology, 2016, 74, S44-S56.	2.7	27
108	The effect of acrylonitrile on gap junctional intercellular communication in rat astrocytes. Cell Biology and Toxicology, 1999, 15, 173-183.	5.3	26

#	Article	IF	CITATIONS
109	Dose-Response Relationship of Diethylnitrosamine-Initiated Tumors in Neonatal Balb/c Mice: Effect of Phenobarbital Promotion. Toxicologic Pathology, 1988, 16, 381-385.	1.8	25
110	Role of cyclic AMP in the inhibition of mouse hepatocyte intercellular communication by liver tumor promoters. Toxicology and Applied Pharmacology, 1987, 91, 159-170.	2.8	24
111	Assessment of Possible Carcinogenicity of Oxyfluorfen to Humans Using Mode of Action Analysis of Rodent Liver Effects. Toxicological Sciences, 2012, 128, 334-345.	3.1	24
112	Icariin protects rotenone-induced neurotoxicity through induction of SIRT3. Toxicology and Applied Pharmacology, 2019, 379, 114639.	2.8	24
113	Induction of Oxidative Stress in Rat Brain by Acrylonitrile (ACN). Toxicological Sciences, 1998, 46, 333-341.	3.1	24
114	Mechanisms for the Induction of Oxidative Stress in Syrian Hamster Embryo Cells by Acrylonitrile. Toxicological Sciences, 2002, 67, 247-255.	3.1	23
115	Effects of 2-butoxyethanol on hepatic oxidative damage. Toxicology Letters, 2002, 126, 19-29.	0.8	22
116	Mode of action of butoxyethanol-induced mouse liver hemangiosarcomas and hepatocellular carcinomas. Toxicology Letters, 2005, 156, 107-115.	0.8	22
117	Role of xenobiotics in the induction and progression of fatty liver disease. Toxicology Research, 2018, 7, 664-680.	2.1	22
118	Biological relevance of effects following chronic administration of octamethylcyclotetrasiloxane (D4) in Fischer 344 rats. Toxicology Letters, 2017, 279, 42-53.	0.8	21
119	Effect of the age of B6C3F1 mice on phenobarbital promotion of diethylnitrosamine-initiated liver tumors. Toxicology and Applied Pharmacology, 1987, 90, 79-85.	2.8	19
120	Mechanisms of 2-Butoxyethanol Carcinogenicity: Studies on Syrian Hamster Embryo (SHE) Cell Transformation. Toxicological Sciences, 2002, 68, 43-50.	3.1	19
121	Cancer dose–response assessment for acrylonitrile based upon rodent brain tumor incidence: Use of epidemiologic, mechanistic, and pharmacokinetic support for nonlinearity. Regulatory Toxicology and Pharmacology, 2005, 43, 85-103.	2.7	19
122	Effect of oral methyl-t-butyl ether (MTBE) on the male mouse reproductive tract and oxidative stress in liver. Reproductive Toxicology, 2008, 26, 246-253.	2.9	19
123	Effect of Different Obesogenic Diets on Pancreatic Histology in Ossabaw Miniature Swine. Pancreas, 2011, 40, 438-443.	1.1	19
124	A toxicogenomic approach for the risk assessment of the food contaminant acetamide. Toxicology and Applied Pharmacology, 2020, 388, 114872.	2.8	18
125	In vitro transformation of rat esophageal epithelial cells with N-nitrosobenzylmethylamine. Carcinogenesis, 1982, 3, 629-634.	2.8	17
126	Metabolism and DNA binding of 2,6-dinitrotoluene in Fischer-344 rats and AJ mice. Toxicology and Applied Pharmacology, 1986, 82, 53-61.	2.8	17

#	Article	IF	CITATIONS
127	Species Differences in the Induction of Hepatocellular DNA Synthesis by Diethanolamine. Toxicological Sciences, 2005, 87, 328-336.	3.1	17
128	Comparison of the effects of acute and subacute treatment of phenobarbital in different strains of mice. Cancer Letters, 1989, 48, 43-51.	7.2	16
129	Effect of Oxidative Stress on DNA Damage and beta-Amyloid Precursor Proteins in Lymphoblastoid Cell Lines from a Nigerian Population. Annals of the New York Academy of Sciences, 1999, 893, 331-336.	3.8	16
130	Mechanistic Investigation of Toxaphene Induced Mouse Liver Tumors. Toxicological Sciences, 2015, 147, 549-561.	3.1	16
131	Caenorhabditis elegans neuron degeneration and mitochondrial suppression caused by selected environmental chemicals. International Journal of Biochemistry and Molecular Biology, 2013, 4, 191-200.	0.1	16
132	Endothelial dysfunction in pathological processes of chronic liver disease during aging. FASEB Journal, 2022, 36, e22125.	0.5	16
133	Morphological Transformation and Oxidative Stress Induced by Cyanide in Syrian Hamster Embryo (SHE) Cells. Toxicological Sciences, 2002, 68, 437-443.	3.1	15
134	Contribution of Environment and Genetics to Pancreatic Cancer Susceptibility. PLoS ONE, 2014, 9, e90052.	2.5	15
135	Carcinogen Induced Unscheduled DNA Synthesis in Mouse Hepatocytes. Toxicologic Pathology, 1984, 12, 119-125.	1.8	14
136	Transforming Growth Factor-α in Carcinogen- Induced F344 Rat Hepatic Foci. Toxicology and Applied Pharmacology, 1996, 140, 131-145.	2.8	14
137	Streptozotocin-induced diabetes increases?-glutamyltranspeptidase activity but not expression in rat liver. Journal of Biochemical and Molecular Toxicology, 1998, 12, 219-225.	3.0	14
138	Comparative Effects of Dieldrin on Hepatic Ploidy, Cell Proliferation, and Apoptosis in Rodent Liver. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2001, 62, 127-141.	2.3	14
139	Tumor-localizing and photosensitizing properties of hematoporphyrin derivative in hamster buccal pouch carcinoma. Oral Surgery, Oral Medicine, and Oral Pathology, 1986, 61, 368-372.	0.6	13
140	Toxaphene-induced mouse liver tumorigenesis is mediated by the constitutive androstane receptor. Journal of Applied Toxicology, 2017, 37, 967-975.	2.8	13
141	Cytotoxic interactions of cardioactive cationic amphiphilic compounds in primary rat hepatocytes in culture. Hepatology, 1990, 12, 48-58.	7.3	12
142	Liver tumor promoting ability of corn oil gavage in B6C3F1 male mice. Cancer Letters, 1990, 50, 215-219.	7.2	12
143	Oxidative status in neuroblastoma: a source of stress?. Journal of Pediatric Surgery, 2008, 43, 330-334.	1.6	12
144	Kupffer cells participate in 2-butoxyethanol-induced liver hemangiosarcomas. Toxicology, 2010, 270, 131-136.	4.2	12

#	Article	IF	CITATIONS
145	Re: Waalkes et al.: Lung tumors in mice induced by "whole-life―inorganic arsenic exposure at human-relevant doses, Arch Toxicol, 2014. Archives of Toxicology, 2014, 88, 2061-2062.	4.2	12
146	Development of a cytokine-producing immortalized murine Kupffer cell line. Cytokine, 2014, 70, 165-172.	3.2	12
147	Thyrotropin-releasing hormone (protirelin) inhibits potassium-stimulated glutamate and aspartate release from hippocampal slices in vitro. Brain Research, 2005, 1054, 45-54.	2.2	11
148	Isolation and characterization of metastatic sublines from a murine transitional cell bladder carcinoma. Clinical and Experimental Metastasis, 1986, 4, 1-11.	3.3	10
149	Reactivity and toxicity of atracurium and its metabolitesin vitro. Canadian Journal of Anaesthesia, 1989, 36, 262-268.	1.6	10
150	Interaction of ketosis and liver regeneration in the rat. Journal of Surgical Research, 1989, 47, 427-432.	1.6	10
151	Protective effects of antioxidants on acrylonitrile-induced oxidative stress in female F344 rats. Environmental Toxicology, 2016, 31, 1808-1818.	4.0	10
152	A simple automated method for continuous fieldwise measurement of microvascular hemodynamics. Microvascular Research, 2019, 123, 7-13.	2.5	10
153	Constitutive androstane receptor (CAR) mediates dieldrin-induced liver tumorigenesis in mouse. Archives of Toxicology, 2020, 94, 2873-2884.	4.2	10
154	Whither the impending european regulation of presumed endocrine disruptors?. Regulatory Toxicology and Pharmacology, 2016, 82, A1-A2.	2.7	9
155	A computational model of liver tissue damage and repair. PLoS ONE, 2020, 15, e0243451.	2.5	9
156	Assessment of Gap Junctional Intercellular Communication. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2009, 41, Unit2.17.	1.1	8
157	Depletion of Kupffer cells modulates ethanol-induced hepatocyte DNA synthesis in C57Bl/6 mice. Environmental Toxicology, 2014, 29, 867-875.	4.0	8
158	Cryopreservation of human blood for alkaline and Fpg-modified comet assay. Toxicology Mechanisms and Methods, 2016, 26, 196-201.	2.7	8
159	Pharmacokinetics and toxicity of the novel oral demethylating agent zebularine in laboratory and tumor bearing dogs. Veterinary and Comparative Oncology, 2017, 15, 226-236.	1.8	8
160	Effect of endurance exercise training on liver gene expression in male and female mice. Applied Physiology, Nutrition and Metabolism, 2021, 46, 356-367.	1.9	8
161	Lack of promoting effect of clonazepam on the development of N-nitrosodiethylamine-initiated hepatocellular tumors in mice is correlated with its inability to inhibit cell-to-cell communication in mouse hepatocytes. Carcinogenesis, 1989, 10, 1719-1724.	2.8	7
162	Upholding science in health, safety and environmental risk assessments and regulations. Toxicology, 2016, 371, 12-16.	4.2	7

#	Article	IF	CITATIONS
163	Response to Druwe and Burgoon. Archives of Toxicology, 2016, 90, 3129-3130.	4.2	7
164	The Effects of Green Tea Extract on Working Memory in Healthy Women. Journal of Nutrition, Health and Aging, 2018, 22, 446-450.	3.3	7
165	Mitochondrial depolarization and repolarization in the early stages of acetaminophen hepatotoxicity in mice. Toxicology, 2020, 439, 152464.	4.2	7
166	A Collaborative Initiative to Establish Genomic Biomarkers for Assessing Tumorigenic Potential to Reduce Reliance on Conventional Rodent Carcinogenicity Studies. Toxicological Sciences, 2022, 188, 4-16.	3.1	7
167	Response to the Waalkes et al., Letter to the editor concerning our "letter to the editor, Re: Lung tumors in mice induced by "whole-life―inorganic arsenic exposure at human relevant doses, Waalkes et al., Arch Toxicol, 2014― Archives of Toxicology, 2015, 89, 2167-2168.	4.2	6
168	Spatial Temporal Analysis of Fieldwise Flow in Microvasculature. Journal of Visualized Experiments, 2019, , .	0.3	6
169	Vancomycin Assay Performance in Patients with End-Stage Renal Disease Receiving Hemodialysis. Pharmacotherapy, 2000, 20, 653-656.	2.6	5
170	Effect of polyhexamethylene biguanide on rat liver. Toxicology Letters, 2018, 285, 94-103.	0.8	5
171	Mechanisms of hepatic cancer by persistent organic pollutants. Current Opinion in Toxicology, 2020, 19, 105-111.	5.0	5
172	Mechanism of 1,3-Dichloropropene-Induced Rat Liver Carcinogenesis. Toxicological Sciences, 2015, 143, 6-15.	3.1	4
173	The Effects of Ecstasy (MDMA) on Rat Liver Bioenergetics. Academic Emergency Medicine, 2004, 11, 723-729.	1.8	3
174	Cancer Biology and Hormesis: Commentary. Critical Reviews in Toxicology, 2005, 35, 593-594.	3.9	3
175	Carcinogenesis. , 2020, , 97-110.		3
176	The Effects of Ecstasy (MDMA) on Rat Liver Bioenergetics. Academic Emergency Medicine, 2004, 11, 723-729.	1.8	3
177	Induction of endogenous retroelements as a potential mechanism for mouse-specific drug-induced carcinogenicity. PLoS ONE, 2017, 12, e0176768.	2.5	3
178	Interplay between MMP-8 and TGF-β1 and its role in regulation of epithelial to mesenchymal transition in hepatocellular carcinoma. Translational Cancer Research, 2016, 5, S1135-S1138.	1.0	3
179	Biotransformation of 2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine (TTBP-TAZ) can contribute to high levels of 2,4,6-tribromophenol (2,4,6-TBP) in humans. Environment International, 2022, 158, 106943.	10.0	3
180	Children's Inter-Individual Variability and Asthma Development. International Journal of Health Sciences, 2015, 9, 456-67.	0.4	3

#	Article	IF	CITATIONS
181	Formation of benzo(a)pyrene-7,8-dihydrodiol glucuronide is a major pathway of metabolism of benzo(a)pyrene in cell cultures from bluegill fry and brown bullhead. Aquatic Toxicology, 1988, 11, 398.	4.0	2
182	Response to Druwe and Burgoon, 2016 Letter to the Editor in Archives of Toxicology. Archives of Toxicology, 2017, 91, 999-1000.	4.2	2
183	Obfuscating transparency?. Regulatory Toxicology and Pharmacology, 2018, 97, A1-A3.	2.7	2
184	The effect of endurance training on nonâ€elcoholic fatty liver disease in mice. Physiological Reports, 2021, 9, e14926.	1.7	2
185	Morphology of liver tumors in brown bullhead catfish () from the black river in Ohio Micron and Microscopica Acta, 1984, 15, 111-112.	0.2	1
186	PPARÎ \pm and Effects of TCE. Environmental Health Perspectives, 2007, 115, A14-A15.	6.0	1
187	Ultrastructural changes in transplanted transitional cell carcinoma following treatment with hematoporphyrin derivative (HPD). Micron and Microscopica Acta, 1984, 15, 121-122.	0.2	0
188	Metabolism of 4,4′-methylene-bis(2-chloroaniline) in explant cultures of human and dog bladder and dog liver cell cultures. Toxicology, 1987, 47, 205.	4.2	0
189	Antioxidants, caffeine, and dibutyryl cAMP prevent the inhibition of mouse hepatocyte intercellular communication by liver tumor promoters. Toxicology, 1987, 47, 208.	4.2	0
190	Influence of the time of phenobarbital treatment on liver tumor development in initiated B6C3F1 mice. Toxicology, 1987, 47, 211.	4.2	0
191	Mouse Liver Carcinogenesis: Mechanisms and Relevance. Toxicological Sciences, 1991, 17, 651-665.	3.1	0
192	Remembering Benjamin Franklin Trump. Veterinary Pathology, 2008, 45, 611-612.	1.7	0
193	Obituary. Toxicologic Pathology, 2008, 36, 649-650.	1.8	0
194	Comments on the safety assessment of decamethylcyclopentasiloxane (D5) published in regulatory toxicology and pharmacology, 2017, 83:117–118. Regulatory Toxicology and Pharmacology, 2017, 89, 305-306.	2.7	0
195	Editorial. Regulatory Toxicology and Pharmacology, 2019, 101, A1-A2.	2.7	0
196	Green Tea Consumption Reduces Oxidative DNA Damage and Lipid Peroxidation in Smokers and Nonâ€Smokers. FASEB Journal, 2015, 29, 922.8.	0.5	0
197	A computational model of liver tissue damage and repair. , 2020, 15, e0243451.		0
198	A computational model of liver tissue damage and repair. , 2020, 15, e0243451.		0

#	Article	IF	CITATIONS
199	A computational model of liver tissue damage and repair. , 2020, 15, e0243451.		0
200	A computational model of liver tissue damage and repair. , 2020, 15, e0243451.		0
201	microRNAâ€34a modulates the senescence of activated hepatic stellate cells in alcoholâ€associated liver injury. FASEB Journal, 2022, 36, .	0.5	0