
Jason G Cyster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4662937/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GPR35 promotes neutrophil recruitment in response to serotonin metabolite 5-HIAA. Cell, 2022, 185, 815-830.e19.	28.9	52
2	CD97 promotes spleen dendritic cell homeostasis through the mechanosensing of red blood cells. Science, 2022, 375, eabi5965.	12.6	42
3	Chemo―and mechanosensing by dendritic cells facilitate antigen surveillance in the spleen*. Immunological Reviews, 2022, 306, 25-42.	6.0	12
4	P2RY8 variants in lupus patients uncover a role for the receptor in immunological tolerance. Journal of Experimental Medicine, 2022, 219, .	8.5	26
5	Structure of S1PR2–heterotrimeric G ₁₃ signaling complex. Science Advances, 2022, 8, eabn0067.	10.3	24
6	GPR174 signals via G <i>α</i> s to control a CD86-containing gene expression program in B cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	9
7	Transcriptional regulation of memory B cell differentiation. Nature Reviews Immunology, 2021, 21, 209-220.	22.7	159
8	ILC3s control splenic cDC homeostasis via lymphotoxin signaling. Journal of Experimental Medicine, 2021, 218, .	8.5	6
9	Long COVID in the skin: a registry analysis of COVID-19 dermatological duration. Lancet Infectious Diseases, The, 2021, 21, 313-314.	9.1	90
10	Abcc1 and Ggt5 support lymphocyte guidance through export and catabolism of <i>S</i> -geranylgeranyl- <scp>l</scp> -glutathione. Science Immunology, 2021, 6, .	11.9	5
11	Lymph node–resident dendritic cells drive T _H 2 cell development involving MARCH1. Science Immunology, 2021, 6, eabh0707.	11.9	10
12	Follicular dendritic cells restrict interleukin-4 availability in germinal centers and foster memory B cell generation. Immunity, 2021, 54, 2256-2272.e6.	14.3	53
13	Requirements for cDC2 positioning in blood-exposed regions of the neonatal and adult spleen. Journal of Experimental Medicine, 2020, 217, .	8.5	8
14	Marginal zone SIGN-R1 ⁺ macrophages are essential for the maturation of germinal center B cells in the spleen. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12295-12305.	7.1	17
15	Organoid Polymer Functionality and Mode of <i>Klebsiella pneumoniae</i> Membrane Antigen Presentation Regulates Ex Vivo Germinal Center Epigenetics in Young and Aged B Cells. Advanced Functional Materials, 2020, 30, 2001232.	14.9	19
16	T follicular helper cells in germinal center B cell selection and lymphomagenesis. Immunological Reviews, 2020, 296, 48-61.	6.0	90
17	The transcription factor Hhex cooperates with the corepressor Tle3 to promote memory B cell development. Nature Immunology, 2020, 21, 1082-1093.	14.5	100
18	Sphingosine-1-phosphate receptor 2 restrains egress of γδT cells from the skin. Journal of Experimental Medicine, 2019, 216, 1487-1496.	8.5	26

#	Article	IF	CITATIONS
19	The HVEM-BTLA Axis Restrains T Cell Help to Germinal Center B Cells and Functions as a Cell-Extrinsic Suppressor in Lymphomagenesis. Immunity, 2019, 51, 310-323.e7.	14.3	74
20	B Cell Responses: Cell Interaction Dynamics and Decisions. Cell, 2019, 177, 524-540.	28.9	540
21	S-Geranylgeranyl-l-glutathione is a ligand for human B cell-confinement receptor P2RY8. Nature, 2019, 567, 244-248.	27.8	59
22	Gâ€protein coupled receptors and ligands that organize humoral immune responses. Immunological Reviews, 2019, 289, 158-172.	6.0	57
23	Atypical chemokine receptor 4 shapes activated B cell fate. Journal of Experimental Medicine, 2018, 215, 801-813.	8.5	18
24	G-Protein Coupled Receptor 18 Contributes to Establishment of the CD8 Effector T Cell Compartment. Frontiers in Immunology, 2018, 9, 660.	4.8	22
25	Single-Cell RNA Sequencing of Lymph Node Stromal Cells Reveals Niche-Associated Heterogeneity. Immunity, 2018, 48, 1014-1028.e6.	14.3	339
26	Critical role of integrin CD11c in splenic dendritic cell capture of missing-self CD47 cells to induce adaptive immunity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6786-6791.	7.1	68
27	The Eph-related tyrosine kinase ligand Ephrin-B1 marks germinal center and memory precursor B cells. Journal of Experimental Medicine, 2017, 214, 639-649.	8.5	105
28	Germinal centers: programmed for affinity maturation and antibody diversification. Current Opinion in Immunology, 2017, 45, 21-30.	5.5	178
29	Distinct oxysterol requirements for positioning naÃ ⁻ ve and activated dendritic cells in the spleen. Science Immunology, 2017, 2, .	11.9	84
30	GPR55 regulates intraepithelial lymphocyte migration dynamics and susceptibility to intestinal damage. Science Immunology, 2017, 2, .	11.9	59
31	Perivascular Fibroblasts of the Developing Spleen Act as LTα1β2-Dependent Precursors of Both T and B Zone Organizer Cells. Cell Reports, 2017, 21, 2500-2514.	6.4	26
32	Peyer's patches: organizing B ell responses at the intestinal frontier. Immunological Reviews, 2016, 271, 230-245.	6.0	224
33	EBI2 augments Tfh cell fate by promoting interaction with IL-2-quenching dendritic cells. Nature, 2016, 533, 110-114.	27.8	256
34	IgA production requires B cell interaction with subepithelial dendritic cells in Peyer's patches. Science, 2016, 352, aaf4822.	12.6	242
35	Ubiquitin-mediated fluctuations in MHC class II facilitate efficient germinal center B cell responses. Journal of Experimental Medicine, 2016, 213, 993-1009.	8.5	65
36	Interfer'n with antibody responses. Science Immunology, 2016, 1, .	11.9	5

#	Article	IF	CITATIONS
37	Migratory and adhesive cues controlling innate-like lymphocyte surveillance of the pathogen-exposed surface of the lymph node. ELife, 2016, 5, .	6.0	79
38	Inflammation induces dermal Vγ4 ⁺ γÎ⊤17 memory-like cells that travel to distant skin and accelerate secondary IL-17–driven responses. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8046-8051.	7.1	176
39	Phenotypic and Morphological Properties of Germinal Center Dark Zone <i>Cxcl12</i> -Expressing Reticular Cells. Journal of Immunology, 2015, 195, 4781-4791.	0.8	109
40	Splenic Dendritic Cells Survey Red Blood Cells for Missing Self-CD47 to Trigger Adaptive Immune Responses. Immunity, 2015, 43, 764-775.	14.3	101
41	The G protein–coupled receptor P2RY8 and follicular dendritic cells promote germinal center confinement of B cells, whereas S1PR3 can contribute to their dissemination. Journal of Experimental Medicine, 2015, 212, 2213-2222.	8.5	49
42	Loss of signalling via Gα13 in germinal centre B-cell-derived lymphoma. Nature, 2014, 516, 254-258.	27.8	253
43	Blood, Sphingosine-1-Phosphate and Lymphocyte Migration Dynamics in the Spleen. Current Topics in Microbiology and Immunology, 2014, 378, 107-128.	1.1	28
44	CXCR4 and a cell-extrinsic mechanism control immature B lymphocyte egress from bone marrow. Journal of Experimental Medicine, 2014, 211, 2567-2581.	8.5	114
45	GPR18 is required for a normal CD8αα intestinal intraepithelial lymphocyte compartment. Journal of Experimental Medicine, 2014, 211, 2351-2359.	8.5	79
46	25-Hydroxycholesterols in innate and adaptive immunity. Nature Reviews Immunology, 2014, 14, 731-743.	22.7	296
47	Sphingosine-1-phosphate receptor 2 is critical for follicular helper T cell retention in germinal centers. Journal of Experimental Medicine, 2014, 211, 1297-1305.	8.5	110
48	Integrin-Mediated Interactions between B Cells and Follicular Dendritic Cells Influence Germinal Center B Cell Fitness. Journal of Immunology, 2014, 192, 4601-4609.	0.8	43
49	Deficiency in IL-17-committed Vγ4+ γδT cells in a spontaneous Sox13-mutant CD45.1+ congenic mouse substrain provides protection from dermatitis. Nature Immunology, 2013, 14, 584-592.	14.5	188
50	Visualization of splenic marginal zone B-cell shuttling and follicular B-cell egress. Nature, 2013, 493, 684-688.	27.8	195
51	Germinal Center Centroblasts Transition to a Centrocyte Phenotype According to a Timed Program and Depend on the Dark Zone for Effective Selection. Immunity, 2013, 39, 912-924.	14.3	224
52	CXCR4 promotes B cell egress from Peyer's patches. Journal of Experimental Medicine, 2013, 210, 1099-1107.	8.5	67
53	EBI2-mediated bridging channel positioning supports splenic dendritic cell homeostasis and particulate antigen capture. ELife, 2013, 2, e00757.	6.0	130
54	Oxysterol Gradient Generation by Lymphoid Stromal Cells Guides Activated B Cell Movement during Humoral Responses. Immunity, 2012, 37, 535-548.	14.3	185

#	Article	IF	CITATIONS
55	Subcapsular Sinus Macrophage Fragmentation and CD169+ Bleb Acquisition by Closely Associated IL-17-Committed Innate-Like Lymphocytes. PLoS ONE, 2012, 7, e38258.	2.5	82
56	S1PR2 links germinal center confinement and growth regulation. Immunological Reviews, 2012, 247, 36-51.	6.0	83
57	Cutting Edge: Identification of a Motile IL-17–Producing γÎ′T Cell Population in the Dermis. Journal of Immunology, 2011, 186, 6091-6095.	0.8	253
58	The sphingosine 1-phosphate receptor S1P2 maintains the homeostasis of germinal center B cells and promotes niche confinement. Nature Immunology, 2011, 12, 672-680.	14.5	229
59	Oxysterols direct immune cell migration via EBI2. Nature, 2011, 475, 524-527.	27.8	386
60	GRK2-Dependent S1PR1 Desensitization Is Required for Lymphocytes to Overcome Their Attraction to Blood. Science, 2011, 333, 1898-1903.	12.6	178
61	Cannabinoid receptor 2 positions and retains marginal zone B cells within the splenic marginal zone. Journal of Experimental Medicine, 2011, 208, 1941-1948.	8.5	60
62	EBI2 Guides Serial Movements of Activated B Cells and Ligand Activity Is Detectable in Lymphoid and Nonlymphoid Tissues. Journal of Immunology, 2011, 187, 3026-3032.	0.8	103
63	B cell follicles and antigen encounters of the third kind. Nature Immunology, 2010, 11, 989-996.	14.5	293
64	A Role for S1P and S1P1 in Immature-B Cell Egress from Mouse Bone Marrow. PLoS ONE, 2010, 5, e9277.	2.5	83
65	Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. Journal of Experimental Medicine, 2010, 207, 17-27.	8.5	414
66	Finding the right niche: B-cell migration in the early phases of T-dependent antibody responses. International Immunology, 2010, 22, 413-419.	4.0	218
67	CD69 Suppresses Sphingosine 1-Phosophate Receptor-1 (S1P1) Function through Interaction with Membrane Helix 4. Journal of Biological Chemistry, 2010, 285, 22328-22337.	3.4	253
68	Lymph node cortical sinus organization and relationship to lymphocyte egress dynamics and antigen exposure. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20447-20452.	7.1	139
69	Shining a Light on Germinal Center B Cells. Cell, 2010, 143, 503-505.	28.9	18
70	Visualizing B cell capture of cognate antigen from follicular dendritic cells. Journal of Experimental Medicine, 2009, 206, 1485-1493.	8.5	232
71	The microanatomy of B cell activation. Current Opinion in Immunology, 2009, 21, 258-265.	5.5	52
72	EBI2 mediates B cell segregation between the outer and centre follicle. Nature, 2009, 460, 1122-1126.	27.8	331

#	Article	IF	CITATIONS
73	Cortical sinus probing, S1P1-dependent entry and flow-based capture of egressing T cells. Nature Immunology, 2009, 10, 58-65.	14.5	195
74	Cannabinoid receptor 2 mediates the retention of immature B cells in bone marrow sinusoids. Nature Immunology, 2009, 10, 403-411.	14.5	184
75	Immune complex relay by subcapsular sinus macrophages and noncognate B cells drives antibody affinity maturation. Nature Immunology, 2009, 10, 786-793.	14.5	364
76	Follicular shuttling of marginal zone B cells facilitates antigen transport. Nature Immunology, 2008, 9, 54-62.	14.5	471
77	S1P1 Receptor Signaling Overrides Retention Mediated by Cαi-Coupled Receptors to Promote T Cell Egress. Immunity, 2008, 28, 122-133.	14.3	381
78	Follicular dendritic cell networks of primary follicles and germinal centers: Phenotype and function. Seminars in Immunology, 2008, 20, 14-25.	5.6	362
79	Role of CXCR5 and CCR7 in Follicular Th Cell Positioning and Appearance of a Programmed Cell Death Gene-1High Germinal Center-Associated Subpopulation. Journal of Immunology, 2007, 179, 5099-5108.	0.8	617
80	Germinal-Center Organization and Cellular Dynamics. Immunity, 2007, 27, 190-202.	14.3	838
81	Imaging of Germinal Center Selection Events During Affinity Maturation. Science, 2007, 315, 528-531.	12.6	701
82	Promotion of Lymphocyte Egress into Blood and Lymph by Distinct Sources of Sphingosine-1-Phosphate. Science, 2007, 316, 295-298.	12.6	826
83	Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nature Immunology, 2007, 8, 992-1000.	14.5	576
84	Finding a way out: lymphocyte egress from lymphoid organs. Nature Immunology, 2007, 8, 1295-1301.	14.5	527
85	CD69 acts downstream of interferon-α/β to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature, 2006, 440, 540-544.	27.8	1,014
86	Plasma cell S1P1 expression determines secondary lymphoid organ retention versus bone marrow tropism. Journal of Experimental Medicine, 2006, 203, 2683-2690.	8.5	177
87	Naive CD4 T cells constitutively express CD40L and augment autoreactive B cell survival. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10717-10722.	7.1	88
88	Antigen-Engaged B Cells Undergo Chemotaxis toward the T Zone and Form Motile Conjugates with Helper T Cells. PLoS Biology, 2005, 3, e150.	5.6	495
89	Intrinsic Lymphotoxin-β Receptor Requirement for Homeostasis of Lymphoid Tissue Dendritic Cells. Immunity, 2005, 22, 439-450.	14.3	304
90	Sphingosine 1-phosphate receptor 1 promotes B cell localization in the splenic marginal zone. Nature Immunology, 2004, 5, 713-720.	14.5	372

#	Article	IF	CITATIONS
91	Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nature Immunology, 2004, 5, 943-952.	14.5	649
92	Dynamics of B Cell Migration to and within Secondary Lymphoid Organs. , 2004, , 203-221.		3
93	Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature, 2004, 427, 355-360.	27.8	2,348
94	Homing of antibody secreting cells. Immunological Reviews, 2003, 194, 48-60.	6.0	180
95	Lymphoid organ development and cell migration. Immunological Reviews, 2003, 195, 5-14.	6.0	127
96	Integrin-Mediated Long-Term B Cell Retention in the Splenic Marginal Zone. Science, 2002, 297, 409-412.	12.6	353
97	Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature, 2002, 416, 94-99.	27.8	506
98	Chemokines as regulators of T cell differentiation. Nature Immunology, 2001, 2, 102-107.	14.5	643
99	A Coordinated Change in Chemokine Responsiveness Guides Plasma Cell Movements. Journal of Experimental Medicine, 2001, 194, 45-56.	8.5	589
100	Splenic T Zone Development Is B Cell Dependent. Journal of Experimental Medicine, 2001, 194, 1649-1660.	8.5	224
101	A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo. Nature Immunology, 2000, 1, 298-304.	14.5	603
102	A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature, 2000, 406, 309-314.	27.8	1,103
103	A B-cell-homing chemokine made in lymphoid follicles activates Burkitt's lymphoma receptor-1. Nature, 1998, 391, 799-803.	27.8	751