Jason G Cyster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4662937/publications.pdf

Version: 2024-02-01

103 25,575 70 102 papers citations h-index g-index

105 105 105 22294 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature, 2004, 427, 355-360.	13.7	2,348
2	A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature, 2000, 406, 309-314.	13.7	1,103
3	CD69 acts downstream of interferon- $\hat{l}\pm\hat{l}^2$ to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature, 2006, 440, 540-544.	13.7	1,014
4	Germinal-Center Organization and Cellular Dynamics. Immunity, 2007, 27, 190-202.	6.6	838
5	Promotion of Lymphocyte Egress into Blood and Lymph by Distinct Sources of Sphingosine-1-Phosphate. Science, 2007, 316, 295-298.	6.0	826
6	A B-cell-homing chemokine made in lymphoid follicles activates Burkitt's lymphoma receptor-1. Nature, 1998, 391, 799-803.	13.7	751
7	Imaging of Germinal Center Selection Events During Affinity Maturation. Science, 2007, 315, 528-531.	6.0	701
8	Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nature Immunology, 2004, 5, 943-952.	7.0	649
9	Chemokines as regulators of T cell differentiation. Nature Immunology, 2001, 2, 102-107.	7.0	643
10	Role of CXCR5 and CCR7 in Follicular Th Cell Positioning and Appearance of a Programmed Cell Death Gene-1High Germinal Center-Associated Subpopulation. Journal of Immunology, 2007, 179, 5099-5108.	0.4	617
11	A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo. Nature Immunology, 2000, 1, 298-304.	7.0	603
12	A Coordinated Change in Chemokine Responsiveness Guides Plasma Cell Movements. Journal of Experimental Medicine, 2001, 194, 45-56.	4.2	589
13	Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nature Immunology, 2007, 8, 992-1000.	7.0	576
14	B Cell Responses: Cell Interaction Dynamics and Decisions. Cell, 2019, 177, 524-540.	13.5	540
15	Finding a way out: lymphocyte egress from lymphoid organs. Nature Immunology, 2007, 8, 1295-1301.	7.0	527
16	Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature, 2002, 416, 94-99.	13.7	506
17	Antigen-Engaged B Cells Undergo Chemotaxis toward the T Zone and Form Motile Conjugates with Helper T Cells. PLoS Biology, 2005, 3, e150.	2.6	495
18	Follicular shuttling of marginal zone B cells facilitates antigen transport. Nature Immunology, 2008, 9, 54-62.	7.0	471

#	Article	IF	Citations
19	Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. Journal of Experimental Medicine, 2010, 207, 17-27.	4.2	414
20	Oxysterols direct immune cell migration via EBI2. Nature, 2011, 475, 524-527.	13.7	386
21	S1P1 Receptor Signaling Overrides Retention Mediated by Gî±i-Coupled Receptors to Promote T Cell Egress. Immunity, 2008, 28, 122-133.	6.6	381
22	Sphingosine 1-phosphate receptor 1 promotes B cell localization in the splenic marginal zone. Nature Immunology, 2004, 5, 713-720.	7.0	372
23	Immune complex relay by subcapsular sinus macrophages and noncognate B cells drives antibody affinity maturation. Nature Immunology, 2009, 10, 786-793.	7.0	364
24	Follicular dendritic cell networks of primary follicles and germinal centers: Phenotype and function. Seminars in Immunology, 2008, 20, 14-25.	2.7	362
25	Integrin-Mediated Long-Term B Cell Retention in the Splenic Marginal Zone. Science, 2002, 297, 409-412.	6.0	353
26	Single-Cell RNA Sequencing of Lymph Node Stromal Cells Reveals Niche-Associated Heterogeneity. Immunity, 2018, 48, 1014-1028.e6.	6.6	339
27	EBI2 mediates B cell segregation between the outer and centre follicle. Nature, 2009, 460, 1122-1126.	13.7	331
28	Intrinsic Lymphotoxin- \hat{l}^2 Receptor Requirement for Homeostasis of Lymphoid Tissue Dendritic Cells. Immunity, 2005, 22, 439-450.	6.6	304
29	25-Hydroxycholesterols in innate and adaptive immunity. Nature Reviews Immunology, 2014, 14, 731-743.	10.6	296
30	B cell follicles and antigen encounters of the third kind. Nature Immunology, 2010, 11, 989-996.	7.0	293
31	EBI2 augments Tfh cell fate by promoting interaction with IL-2-quenching dendritic cells. Nature, 2016, 533, 110-114.	13.7	256
32	CD69 Suppresses Sphingosine 1-Phosophate Receptor-1 (S1P1) Function through Interaction with Membrane Helix 4. Journal of Biological Chemistry, 2010, 285, 22328-22337.	1.6	253
33	Cutting Edge: Identification of a Motile IL-17–Producing γδT Cell Population in the Dermis. Journal of Immunology, 2011, 186, 6091-6095.	0.4	253
34	Loss of signalling via Gα13 in germinal centre B-cell-derived lymphoma. Nature, 2014, 516, 254-258.	13.7	253
35	lgA production requires B cell interaction with subepithelial dendritic cells in Peyer's patches. Science, 2016, 352, aaf4822.	6.0	242
36	Visualizing B cell capture of cognate antigen from follicular dendritic cells. Journal of Experimental Medicine, 2009, 206, 1485-1493.	4.2	232

#	Article	IF	Citations
37	The sphingosine 1-phosphate receptor S1P2 maintains the homeostasis of germinal center B cells and promotes niche confinement. Nature Immunology, 2011, 12, 672-680.	7.0	229
38	Splenic T Zone Development Is B Cell Dependent. Journal of Experimental Medicine, 2001, 194, 1649-1660.	4.2	224
39	Germinal Center Centroblasts Transition to a Centrocyte Phenotype According to a Timed Program and Depend on the Dark Zone for Effective Selection. Immunity, 2013, 39, 912-924.	6.6	224
40	Peyer's patches: organizing Bâ€eell responses at the intestinal frontier. Immunological Reviews, 2016, 271, 230-245.	2.8	224
41	Finding the right niche: B-cell migration in the early phases of T-dependent antibody responses. International Immunology, 2010, 22, 413-419.	1.8	218
42	Cortical sinus probing, S1P1-dependent entry and flow-based capture of egressing T cells. Nature Immunology, 2009, 10, 58-65.	7.0	195
43	Visualization of splenic marginal zone B-cell shuttling and follicular B-cell egress. Nature, 2013, 493, 684-688.	13.7	195
44	Deficiency in IL-17-committed $\hat{V}^{3}4+\hat{I}^{3}\hat{I}$ T cells in a spontaneous Sox13-mutant CD45.1+ congenic mouse substrain provides protection from dermatitis. Nature Immunology, 2013, 14, 584-592.	7.0	188
45	Oxysterol Gradient Generation by Lymphoid Stromal Cells Guides Activated B Cell Movement during Humoral Responses. Immunity, 2012, 37, 535-548.	6.6	185
46	Cannabinoid receptor 2 mediates the retention of immature B cells in bone marrow sinusoids. Nature Immunology, 2009, 10, 403-411.	7.0	184
47	Homing of antibody secreting cells. Immunological Reviews, 2003, 194, 48-60.	2.8	180
48	GRK2-Dependent S1PR1 Desensitization Is Required for Lymphocytes to Overcome Their Attraction to Blood. Science, 2011, 333, 1898-1903.	6.0	178
49	Germinal centers: programmed for affinity maturation and antibody diversification. Current Opinion in Immunology, 2017, 45, 21-30.	2.4	178
50	Plasma cell S1P1 expression determines secondary lymphoid organ retention versus bone marrow tropism. Journal of Experimental Medicine, 2006, 203, 2683-2690.	4.2	177
51	Inflammation induces dermal Vγ4 ⁺ γÎT17 memory-like cells that travel to distant skin and accelerate secondary IL-17–driven responses. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8046-8051.	3.3	176
52	Transcriptional regulation of memory B cell differentiation. Nature Reviews Immunology, 2021, 21, 209-220.	10.6	159
53	Lymph node cortical sinus organization and relationship to lymphocyte egress dynamics and antigen exposure. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20447-20452.	3.3	139
54	EBI2-mediated bridging channel positioning supports splenic dendritic cell homeostasis and particulate antigen capture. ELife, 2013, 2, e00757.	2.8	130

#	Article	ΙF	Citations
55	Lymphoid organ development and cell migration. Immunological Reviews, 2003, 195, 5-14.	2.8	127
56	CXCR4 and a cell-extrinsic mechanism control immature B lymphocyte egress from bone marrow. Journal of Experimental Medicine, 2014, 211, 2567-2581.	4.2	114
57	Sphingosine-1-phosphate receptor 2 is critical for follicular helper T cell retention in germinal centers. Journal of Experimental Medicine, 2014, 211, 1297-1305.	4.2	110
58	Phenotypic and Morphological Properties of Germinal Center Dark Zone <i>Cxcl12</i> -Expressing Reticular Cells. Journal of Immunology, 2015, 195, 4781-4791.	0.4	109
59	The Eph-related tyrosine kinase ligand Ephrin-B1 marks germinal center and memory precursor B cells. Journal of Experimental Medicine, 2017, 214, 639-649.	4.2	105
60	EBI2 Guides Serial Movements of Activated B Cells and Ligand Activity Is Detectable in Lymphoid and Nonlymphoid Tissues. Journal of Immunology, 2011, 187, 3026-3032.	0.4	103
61	Splenic Dendritic Cells Survey Red Blood Cells for Missing Self-CD47 to Trigger Adaptive Immune Responses. Immunity, 2015, 43, 764-775.	6.6	101
62	The transcription factor Hhex cooperates with the corepressor Tle3 to promote memory B cell development. Nature Immunology, 2020, 21, 1082-1093.	7.0	100
63	T follicular helper cells in germinal center B cell selection and lymphomagenesis. Immunological Reviews, 2020, 296, 48-61.	2.8	90
64	Long COVID in the skin: a registry analysis of COVID-19 dermatological duration. Lancet Infectious Diseases, The, 2021, 21, 313-314.	4.6	90
65	Naive CD4 T cells constitutively express CD40L and augment autoreactive B cell survival. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10717-10722.	3.3	88
66	Distinct oxysterol requirements for positioning na $\!\!\tilde{A}$ ve and activated dendritic cells in the spleen. Science Immunology, 2017, 2, .	5.6	84
67	A Role for S1P and S1P1 in Immature-B Cell Egress from Mouse Bone Marrow. PLoS ONE, 2010, 5, e9277.	1.1	83
68	S1PR2 links germinal center confinement and growth regulation. Immunological Reviews, 2012, 247, 36-51.	2.8	83
69	Subcapsular Sinus Macrophage Fragmentation and CD169+ Bleb Acquisition by Closely Associated IL-17-Committed Innate-Like Lymphocytes. PLoS ONE, 2012, 7, e38258.	1.1	82
70	GPR18 is required for a normal CD8 $\hat{i}\pm\hat{i}\pm$ intestinal intraepithelial lymphocyte compartment. Journal of Experimental Medicine, 2014, 211, 2351-2359.	4.2	79
71	Migratory and adhesive cues controlling innate-like lymphocyte surveillance of the pathogen-exposed surface of the lymph node. ELife, 2016, 5, .	2.8	79
72	The HVEM-BTLA Axis Restrains T Cell Help to Germinal Center B Cells and Functions as a Cell-Extrinsic Suppressor in Lymphomagenesis. Immunity, 2019, 51, 310-323.e7.	6.6	74

#	Article	IF	Citations
73	Critical role of integrin CD11c in splenic dendritic cell capture of missing-self CD47 cells to induce adaptive immunity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6786-6791.	3.3	68
74	CXCR4 promotes B cell egress from Peyer's patches. Journal of Experimental Medicine, 2013, 210, 1099-1107.	4.2	67
75	Ubiquitin-mediated fluctuations in MHC class II facilitate efficient germinal center B cell responses. Journal of Experimental Medicine, 2016, 213, 993-1009.	4.2	65
76	Cannabinoid receptor 2 positions and retains marginal zone B cells within the splenic marginal zone. Journal of Experimental Medicine, 2011, 208, 1941-1948.	4.2	60
77	GPR55 regulates intraepithelial lymphocyte migration dynamics and susceptibility to intestinal damage. Science Immunology, 2017, 2, .	5.6	59
78	S-Geranylgeranyl-l-glutathione is a ligand for human B cell-confinement receptor P2RY8. Nature, 2019, 567, 244-248.	13.7	59
79	Gâ€protein coupled receptors and ligands that organize humoral immune responses. Immunological Reviews, 2019, 289, 158-172.	2.8	57
80	Follicular dendritic cells restrict interleukin-4 availability in germinal centers and foster memory B cell generation. Immunity, 2021, 54, 2256-2272.e6.	6.6	53
81	The microanatomy of B cell activation. Current Opinion in Immunology, 2009, 21, 258-265.	2.4	52
82	GPR35 promotes neutrophil recruitment in response to serotonin metabolite 5-HIAA. Cell, 2022, 185, 815-830.e19.	13.5	52
83	The G protein–coupled receptor P2RY8 and follicular dendritic cells promote germinal center confinement of B cells, whereas S1PR3 can contribute to their dissemination. Journal of Experimental Medicine, 2015, 212, 2213-2222.	4.2	49
84	Integrin-Mediated Interactions between B Cells and Follicular Dendritic Cells Influence Germinal Center B Cell Fitness. Journal of Immunology, 2014, 192, 4601-4609.	0.4	43
85	CD97 promotes spleen dendritic cell homeostasis through the mechanosensing of red blood cells. Science, 2022, 375, eabi5965.	6.0	42
86	Blood, Sphingosine-1-Phosphate and Lymphocyte Migration Dynamics in the Spleen. Current Topics in Microbiology and Immunology, 2014, 378, 107-128.	0.7	28
87	Perivascular Fibroblasts of the Developing Spleen Act as $LT\hat{l}\pm 1\hat{l}^2$ 2-Dependent Precursors of Both T and B Zone Organizer Cells. Cell Reports, 2017, 21, 2500-2514.	2.9	26
88	Sphingosine-1-phosphate receptor 2 restrains egress of $\hat{I}^3\hat{I}'T$ cells from the skin. Journal of Experimental Medicine, 2019, 216, 1487-1496.	4.2	26
89	P2RY8 variants in lupus patients uncover a role for the receptor in immunological tolerance. Journal of Experimental Medicine, 2022, 219, .	4.2	26
90	Structure of S1PR2–heterotrimeric G ₁₃ signaling complex. Science Advances, 2022, 8, eabn0067.	4.7	24

#	Article	IF	CITATIONS
91	G-Protein Coupled Receptor 18 Contributes to Establishment of the CD8 Effector T Cell Compartment. Frontiers in Immunology, 2018, 9, 660.	2.2	22
92	Organoid Polymer Functionality and Mode of <i>Klebsiella pneumoniae</i> Membrane Antigen Presentation Regulates Ex Vivo Germinal Center Epigenetics in Young and Aged B Cells. Advanced Functional Materials, 2020, 30, 2001232.	7.8	19
93	Shining a Light on Germinal Center B Cells. Cell, 2010, 143, 503-505.	13.5	18
94	Atypical chemokine receptor 4 shapes activated B cell fate. Journal of Experimental Medicine, 2018, 215, 801-813.	4.2	18
95	Marginal zone SIGN-R1 ⁺ macrophages are essential for the maturation of germinal center B cells in the spleen. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12295-12305.	3.3	17
96	Chemo―and mechanosensing by dendritic cells facilitate antigen surveillance in the spleen*. Immunological Reviews, 2022, 306, 25-42.	2.8	12
97	Lymph node–resident dendritic cells drive T _H 2 cell development involving MARCH1. Science Immunology, 2021, 6, eabh0707.	5.6	10
98	GPR174 signals via $G(i)^{i} < i > i > t$ to control a CD86-containing gene expression program in B cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	9
99	Requirements for cDC2 positioning in blood-exposed regions of the neonatal and adult spleen. Journal of Experimental Medicine, 2020, 217, .	4.2	8
100	ILC3s control splenic cDC homeostasis via lymphotoxin signaling. Journal of Experimental Medicine, 2021, 218, .	4.2	6
101	Abcc1 and Ggt5 support lymphocyte guidance through export and catabolism of <i>S</i> -geranylgeranyl- <scp>I</scp> -glutathione. Science Immunology, 2021, 6, .	5.6	5
102	Interfer'n with antibody responses. Science Immunology, 2016, 1, .	5.6	5
103	Dynamics of B Cell Migration to and within Secondary Lymphoid Organs. , 2004, , 203-221.		3