F Akif Tezcan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4661802/publications.pdf

Version: 2024-02-01

101543 106344 6,416 64 36 65 h-index citations g-index papers 67 67 67 5610 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Metal-hydrogen-pi-bonded organic frameworks. Dalton Transactions, 2022, 51, 1927-1935.	3.3	12
2	Overcoming universal restrictions on metal selectivity by protein design. Nature, 2022, 603, 522-527.	27.8	32
3	Dynamic, Polymer-Integrated Crystals for Efficient, Reversible Protein Encapsulation. Journal of the American Chemical Society, 2022, 144, 10139-10144.	13.7	14
4	Enzyme-Directed Functionalization of Designed, Two-Dimensional Protein Lattices. Biochemistry, 2021, 60, 1050-1062.	2.5	8
5	Design of metal-mediated protein assemblies via hydroxamic acid functionalities. Nature Protocols, 2021, 16, 3264-3297.	12.0	14
6	lon-dependent protein–surface interactions from intrinsic solvent response. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
7	Protein Assembly by Design. Chemical Reviews, 2021, 121, 13701-13796.	47.7	123
8	Assembly of a patchy protein into variable 2D lattices via tunable multiscale interactions. Nature Communications, 2020, 11, 3770.	12.8	31
9	Anisotropic Dynamics and Mechanics of Macromolecular Crystals Containing Lattice-Patterned Polymer Networks. Journal of the American Chemical Society, 2020, 142, 19402-19410.	13.7	8
10	Metalâ€Templated Design of Chemically Switchable Protein Assemblies with Highâ€Affinity Coordination Sites. Angewandte Chemie, 2020, 132, 22124-22128.	2.0	4
11	Tunable and Cooperative Thermomechanical Properties of Protein–Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 17265-17270.	13.7	31
12	Inside polyMOFs: layered structures in polymer-based metal–organic frameworks. Chemical Science, 2020, 11, 10523-10528.	7.4	12
13	Metalâ€Templated Design of Chemically Switchable Protein Assemblies with Highâ€Affinity Coordination Sites. Angewandte Chemie - International Edition, 2020, 59, 21940-21944.	13.8	24
14	An Exceptionally Stable Metal–Organic Framework Constructed from Chelate-Based Metal–Organic Polyhedra. Journal of the American Chemical Society, 2020, 142, 6907-6912.	13.7	58
15	Electron Transfer in Nitrogenase. Chemical Reviews, 2020, 120, 5158-5193.	47.7	150
16	Constructing protein polyhedra via orthogonal chemical interactions. Nature, 2020, 578, 172-176.	27.8	100
17	Design and Construction of Functional Supramolecular Metalloprotein Assemblies. Accounts of Chemical Research, 2019, 52, 345-355.	15.6	73
18	Redox-Dependent Metastability of the Nitrogenase P-Cluster. Journal of the American Chemical Society, 2019, 141, 10091-10098.	13.7	30

#	Article	IF	Citations
19	An efficient, step-economical strategy for the design of functional metalloproteins. Nature Chemistry, 2019, 11, 434-441.	13.6	57
20	Hyperexpandable, self-healing macromolecular crystals with integrated polymer networks. Nature, 2018, 557, 86-91.	27.8	130
21	Engineering the entropy-driven free-energy landscape of a dynamic nanoporous protein assembly. Nature Chemistry, 2018, 10, 732-739.	13.6	51
22	Self-Assembly of a Designed Nucleoprotein Architecture through Multimodal Interactions. ACS Central Science, 2018, 4, 1578-1586.	11.3	22
23	Determining the Structural and Energetic Basis of Allostery in a De Novo Designed Metalloprotein Assembly. Journal of the American Chemical Society, 2018, 140, 10043-10053.	13.7	20
24	Determination of nucleoside triphosphatase activities from measurement of true inorganic phosphate in the presence of labile phosphate compounds. Analytical Biochemistry, 2017, 520, 62-67.	2.4	3
25	Synthetic Modularity of Protein–Metal–Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 8160-8166.	13.7	105
26	Importance of Scaffold Flexibility/Rigidity in the Design and Directed Evolution of Artificial Metallo- \hat{l}^2 -lactamases. Journal of the American Chemical Society, 2017, 139, 16772-16779.	13.7	39
27	Repurposing proteins for new bioinorganic functions. Essays in Biochemistry, 2017, 61, 245-258.	4.7	12
28	Self-assembly of coherently dynamic, auxetic, two-dimensional protein crystals. Nature, 2016, 533, 369-373.	27.8	255
29	Tyrosine-Coordinated P-Cluster in <i>G. diazotrophicus</i> Nitrogenase: Evidence for the Importance of O-Based Ligands in Conformationally Gated Electron Transfer. Journal of the American Chemical Society, 2016, 138, 10124-10127.	13.7	40
30	De Novo Design of an Allosteric Metalloprotein Assembly with Strained Disulfide Bonds. Journal of the American Chemical Society, 2016, 138, 13163-13166.	13.7	40
31	Tunable helicity, stability and DNA-binding properties of short peptides with hybrid metal coordination motifs. Chemical Science, 2016, 7, 5453-5461.	7.4	9
32	Structural Evidence for Asymmetrical Nucleotide Interactions in Nitrogenase. Journal of the American Chemical Society, 2015, 137, 146-149.	13.7	44
33	A Metal Organic Framework with Spherical Protein Nodes: Rational Chemical Design of 3D Protein Crystals. Journal of the American Chemical Society, 2015, 137, 11598-11601.	13.7	170
34	Evidence for Functionally Relevant Encounter Complexes in Nitrogenase Catalysis. Journal of the American Chemical Society, 2015, 137, 12704-12712.	13.7	31
35	Designed, Helical Protein Nanotubes with Variable Diameters from a Single Building Block. Journal of the American Chemical Society, 2015, 137, 10468-10471.	13.7	86
36	Exceptionally stable, redox-active supramolecular protein assemblies with emergent properties. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2897-2902.	7.1	103

#	Article	IF	CITATIONS
37	A designed supramolecular protein assembly with in vivo enzymatic activity. Science, 2014, 346, 1525-1528.	12.6	236
38	Interfacial metal coordination in engineered protein and peptide assemblies. Current Opinion in Chemical Biology, 2014, 19, 42-49.	6.1	83
39	Metals in Protein–Protein Interfaces. Annual Review of Biophysics, 2014, 43, 409-431.	10.0	63
40	Functional, metal-based crosslinkers for \hat{l}_{\pm} -helix induction in short peptides. Chemical Science, 2013, 4, 3740.	7.4	22
41	In Vitro and Cellular Self-Assembly of a Zn-Binding Protein Cryptand via Templated Disulfide Bonds. Journal of the American Chemical Society, 2013, 135, 12013-12022.	13.7	35
42	Re-engineering protein interfaces yields copper-inducible ferritin cage assembly. Nature Chemical Biology, 2013, 9, 169-176.	8.0	169
43	ATP-Uncoupled, Six-Electron Photoreduction of Hydrogen Cyanide to Methane by the Molybdenum–Iron Protein. Journal of the American Chemical Society, 2012, 134, 8416-8419.	13.7	55
44	Metal-directed, chemically tunable assembly of one-, two- and three-dimensional crystalline protein arrays. Nature Chemistry, 2012, 4, 375-382.	13.6	332
45	Porous protein frameworks with unsaturated metal centers in sterically encumbered coordination sites. Chemical Communications, 2011, 47, 313-315.	4.1	33
46	Templated Construction of a Zn-Selective Protein Dimerization Motif. Inorganic Chemistry, 2011, 50, 6323-6329.	4.0	19
47	Lightâ€Driven Uncoupling of Nitrogenase Catalysis from ATP Hydrolysis. ChemCatChem, 2011, 3, 1549-1555.	3.7	14
48	Expanding the utility of proteins as platforms for coordination chemistry. Coordination Chemistry Reviews, 2011, 255, 790-803.	18.8	36
49	Structural Characterization of a Microperoxidase Inside a Metalâ€Directed Protein Cage. Angewandte Chemie - International Edition, 2010, 49, 7014-7018.	13.8	51
50	Metal templated design of protein interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1827-1832.	7.1	125
51	Metal-Directed Protein Self-Assembly. Accounts of Chemical Research, 2010, 43, 661-672.	15.6	243
52	Controlled Protein Dimerization through Hybrid Coordination Motifs. Inorganic Chemistry, 2010, 49, 4362-4369.	4.0	27
53	Evolution of Metal Selectivity in Templated Protein Interfaces. Journal of the American Chemical Society, 2010, 132, 8610-8617.	13.7	61
54	ATP- and Ironâ^'Protein-Independent Activation of Nitrogenase Catalysis by Light. Journal of the American Chemical Society, 2010, 132, 13672-13674.	13.7	66

#	Article	IF	CITATION
55	Modular and Versatile Hybrid Coordination Motifs on α-Helical Protein Surfaces. Inorganic Chemistry, 2010, 49, 7106-7115.	4.0	21
56	A Superprotein Triangle Driven by Nickel(II) Coordination: Exploiting Non-Natural Metal Ligands in Protein Self-Assembly. Journal of the American Chemical Society, 2009, 131, 9136-9137.	13.7	64
57	Control of Protein Oligomerization Symmetry by Metal Coordination: <i>C</i> ₂ and <i>C</i> ₃ Symmetrical Assemblies through Cu ^{II} and Ni ^{II} Coordination. Inorganic Chemistry, 2009, 48, 2726-2728.	4.0	73
58	Metal-Mediated Self-Assembly of Protein Superstructures: Influence of Secondary Interactions on Protein Oligomerization and Aggregation. Journal of the American Chemical Society, 2008, 130, 6082-6084.	13.7	74
59	Controlling Proteinâ^'Protein Interactions through Metal Coordination:  Assembly of a 16-Helix Bundle Protein. Journal of the American Chemical Society, 2007, 129, 13374-13375.	13.7	122
60	Stability and Folding Kinetics of Structurally Characterized Cytochrome c-b562,. Biochemistry, 2006, 45, 10504-10511.	2.5	54
61	Structural basis of biological nitrogen fixation. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2005, 363, 971-984.	3.4	852
62	Nitrogenase Complexes: Multiple Docking Sites for a Nucleotide Switch Protein. Science, 2005, 309, 1377-1380.	12.6	216
63	Nitrogenase MoFe-Protein at 1.16 A Resolution: A Central Ligand in the FeMo-Cofactor. Science, 2002, 297, 1696-1700.	12.6	1,041
64	Effects of Ligation and Folding on Reduction Potentials of Heme Proteins. Journal of the American Chemical Society, 1998, 120, 13383-13388.	13.7	276