
Louis M Pitet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4661517/publications.pdf Version: 2024-02-01

LOUIS M DITET

#	Article	IF	CITATIONS
1	Bio-Based Upcycling of Poly(ethylene terephthalate) Waste for the Preparation of High-Performance Thermoplastic Copolyesters. Macromolecules, 2022, 55, 1042-1049.	4.8	20
2	Fully biobased triblock copolymers generated using an unconventional oscillatory plug flow reactor. Polymer Chemistry, 2022, 13, 4406-4415.	3.9	6
3	Utility of Chemical Upcycling in Transforming Postconsumer PET to PBT-Based Thermoplastic Copolyesters Containing a Renewable Fatty-Acid-Derived Soft Block. ACS Polymers Au, 2022, 2, 351-360.	4.1	5
4	Trends in Double Networks as Bioprintable and Injectable Hydrogel Scaffolds for Tissue Regeneration. ACS Biomaterials Science and Engineering, 2021, 7, 4077-4101.	5.2	37
5	Biomimetic double network hydrogels: Combining dynamic and static crosslinks to enable biofabrication and control cellâ€matrix interactions. Journal of Polymer Science, 2021, 59, 2832-2843.	3.8	18
6	Polymerizations in Continuous Flow: Recent Advances in the Synthesis of Diverse Polymeric Materials. ACS Macro Letters, 2020, 9, 123-133.	4.8	98
7	Tough Hybrid Hydrogels Adapted to the Undergraduate Laboratory. Journal of Chemical Education, 2020, 97, 2006-2013.	2.3	13
8	Sequence-defined nucleobase containing oligomers <i>via</i> reversible addition–fragmentation chain transfer single monomer addition. Polymer Chemistry, 2020, 11, 2027-2033.	3.9	9
9	Dispersity and architecture driven self-assembly and confined crystallization of symmetric branched block copolymers. Polymer Chemistry, 2019, 10, 5385-5395.	3.9	10
10	Synthesis and Self-Assembly of Discrete Dimethylsiloxane–Lactic Acid Diblock Co-oligomers: The Dononacontamer and Its Shorter Homologues. Journal of the American Chemical Society, 2016, 138, 4210-4218.	13.7	131
11	Branched Block Copolymers for Tuning of Morphology and Feature Size in Thin Film Nanolithography. Macromolecules, 2016, 49, 2318-2326.	4.8	47
12	Ring-Opening Metathesis Polymerization of a Diolefinic [2]-Catenane–Copper(I) Complex: An Easy Route to Polycatenanes. Macromolecules, 2015, 48, 1358-1363.	4.8	35
13	Probing the Effect of Molecular Nonuniformity in Directed Self-Assembly of Diblock Copolymers in Nanoconfined Space. ACS Nano, 2015, 9, 9594-9602.	14.6	10
14	Functionalized regio-regular linear polyethylenes from the ROMP of 3-substituted cyclooctenes. Applied Petrochemical Research, 2015, 5, 19-25.	1.3	35
15	The effect of pendant benzene-1,3,5-tricarboxamides in the middle block of ABA triblock copolymers: synthesis and mechanical properties. Polymer Chemistry, 2014, 5, 1463-1470.	3.9	14
16	Tough Stimuli-Responsive Supramolecular Hydrogels with Hydrogen-Bonding Network Junctions. Journal of the American Chemical Society, 2014, 136, 6969-6977.	13.7	525
17	Well-Organized Dense Arrays of Nanodomains in Thin Films of Poly(dimethylsiloxane)- <i>b</i> -poly(lactide) Diblock Copolymers. Macromolecules, 2013, 46, 8289-8295.	4.8	55
18	Nanostructured Supramolecular Block Copolymers Based on Polydimethylsiloxane and Polylactide. ACS Macro Letters, 2013, 2, 1006-1010.	4.8	62

LOUIS M PITET

#	Article	IF	CITATIONS
19	Sequential ROMP of cyclooctenes as a route to linear polyethylene block copolymers. Dalton Transactions, 2013, 42, 9079.	3.3	26
20	Synthesis, assembly, and cross-linking of polymer amphiphiles in situ: polyurethane–polylactide core–shell particles. Polymer Chemistry, 2013, 4, 2546.	3.9	11
21	Reactive triblock polymers from tandem ring-opening polymerization for nanostructured vinyl thermosets. Polymer Chemistry, 2012, 3, 1827-1837.	3.9	15
22	Carboxy-Telechelic Polyolefins by ROMP Using Maleic Acid as a Chain Transfer Agent. Macromolecules, 2011, 44, 2378-2381.	4.8	70
23	Regio- and Stereoselective Ring-Opening Metathesis Polymerization of 3-Substituted Cyclooctenes. Journal of the American Chemical Society, 2011, 133, 5794-5797.	13.7	124
24	Investigation of the role of hydrophilic chain length in amphiphilic perfluoropolyether/poly(ethylene) Tj ETQq0 0 (0 rgBT /Ov	erlock 10 Tf 5
25	High Modulus, Low Surface Energy, Photochemically Cured Materials from Liquid Precursors. Macromolecules, 2010, 43, 10397-10405.	4.8	15
26	Tough Polylactide Graft Copolymers. Macromolecules, 2010, 43, 7394-7397.	4.8	98
27	Synthesis of Linear, H-Shaped, and Arachnearm Block Copolymers By Tandem Ring-Opening Polymerizations. Macromolecules, 2010, 43, 8018-8025.	4.8	40
28	Nanoporous Linear Polyethylene from a Block Polymer Precursor. Journal of the American Chemical Society, 2010, 132, 8230-8231.	13.7	106
29	Combining Ring-Opening Metathesis Polymerization and Cyclic Ester Ring-Opening Polymerization To Form ABA Triblock Copolymers from 1,5-Cyclooctadiene and <scp>d,l</scp> -Lactide. Macromolecules, 2009, 42, 3674-3680.	4.8	75
30	Consequences of Polylactide Stereochemistry on the Properties of Polylactide-Polymenthide-Polylactide Thermoplastic Elastomers. Biomacromolecules, 2009, 10, 2904-2911.	5.4	101
31	Linear and Branched Architectures from the Polymerization of Lactide with Glycidol. Macromolecules, 2007, 40, 2327-2334.	4.8	84

³² Mechanically versatile isosorbideâ€based thermoplastic copolyetherâ€esters with a poly(ethylene glycol) 3.8 2 soft segment. Journal of Polymer Science, 0, , .