
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4661443/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metagenomic analysis reveals wastewater treatment plants as hotspots of antibiotic resistance genes and mobile genetic elements. Water Research, 2017, 123, 468-478.	11.3	604
2	Dissecting microbial community structure and methane-producing pathways of a full-scale anaerobic reactor digesting activated sludge from wastewater treatment by metagenomic sequencing. Microbial Cell Factories, 2015, 14, 33.	4.0	323
3	Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant. Water Research, 2018, 136, 131-136.	11.3	281
4	A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME Journal, 2018, 12, 1929-1939.	9.8	266
5	Antiepileptic drug carbamazepine promotes horizontal transfer of plasmid-borne multi-antibiotic resistance genes within and across bacterial genera. ISME Journal, 2019, 13, 509-522.	9.8	245
6	Biological Removal of Nitrogen from Wastewater. Reviews of Environmental Contamination and Toxicology, 2008, 192, 159-195.	1.3	230
7	Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial genera by natural transformation. ISME Journal, 2020, 14, 1847-1856.	9.8	204
8	Long-term effect of dissolved oxygen on partial nitrification performance and microbial community structure. Bioresource Technology, 2009, 100, 2796-2802.	9.6	194
9	Triclosan at environmentally relevant concentrations promotes horizontal transfer of multidrug resistance genes within and across bacterial genera. Environment International, 2018, 121, 1217-1226.	10.0	182
10	Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes. Water Research, 2020, 169, 115229.	11.3	179
11	Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera. Environment International, 2019, 129, 478-487.	10.0	171
12	Short- and long-term effects of temperature on partial nitrification in a sequencing batch reactor treating domestic wastewater. Journal of Hazardous Materials, 2010, 179, 471-479.	12.4	139
13	Metagenomic analysis of anammox communities in three different microbial aggregates. Environmental Microbiology, 2016, 18, 2979-2993.	3.8	133
14	Non-antibiotic pharmaceuticals enhance the transmission of exogenous antibiotic resistance genes through bacterial transformation. ISME Journal, 2020, 14, 2179-2196.	9.8	133
15	Non-antibiotic antimicrobial triclosan induces multiple antibiotic resistance through genetic mutation. Environment International, 2018, 118, 257-265.	10.0	131
16	Nonnutritive sweeteners can promote the dissemination of antibiotic resistance through conjugative gene transfer. ISME Journal, 2021, 15, 2117-2130.	9.8	131
17	Nitrate reduction by denitrifying anaerobic methane oxidizing microorganisms can reach a practically useful rate. Water Research, 2015, 87, 211-217.	11.3	114
18	Antidepressant fluoxetine induces multiple antibiotics resistance in Escherichia coli via ROS-mediated mutagenesis. Environment International, 2018, 120, 421-430.	10.0	112

#	Article	IF	CITATIONS
19	Efficient inactivation of antibiotic resistant bacteria and antibiotic resistance genes by photo-Fenton process under visible LED light and neutral pH. Water Research, 2020, 179, 115878.	11.3	112
20	Modeling of Nitrous Oxide Production by Autotrophic Ammonia-Oxidizing Bacteria with Multiple Production Pathways. Environmental Science & Technology, 2014, 48, 3916-3924.	10.0	110
21	Enhanced nutrient removal in a modified step feed process treating municipal wastewater with different inflow distribution ratios and nutrient ratios. Bioresource Technology, 2010, 101, 9012-9019.	9.6	109
22	Disinfection spreads antimicrobial resistance. Science, 2021, 371, 474-474.	12.6	101
23	Unraveling microbial structure and diversity of activated sludge in a full-scale simultaneous nitrogen and phosphorus removal plant using metagenomic sequencing. Enzyme and Microbial Technology, 2017, 102, 16-25.	3.2	100
24	Chlorine disinfection facilitates natural transformation through ROS-mediated oxidative stress. ISME Journal, 2021, 15, 2969-2985.	9.8	99
25	Silver Nanoparticles Entering Soils via the Wastewater–Sludge–Soil Pathway Pose Low Risk to Plants but Elevated Cl Concentrations Increase Ag Bioavailability. Environmental Science & Technology, 2016, 50, 8274-8281.	10.0	92
26	Microbial Chromate Reduction Coupled to Anaerobic Oxidation of Elemental Sulfur or Zerovalent Iron. Environmental Science & Technology, 2019, 53, 3198-3207.	10.0	88
27	Effective and robust partial nitrification to nitrite by real-time aeration duration control in an SBR treating domestic wastewater. Process Biochemistry, 2009, 44, 979-985.	3.7	86
28	Vertical up-flow constructed wetlands exhibited efficient antibiotic removal but induced antibiotic resistance genes in effluent. Chemosphere, 2018, 203, 434-441.	8.2	85
29	Microbial Selenate Reduction Driven by a Denitrifying Anaerobic Methane Oxidation Biofilm. Environmental Science & Technology, 2018, 52, 4006-4012.	10.0	81
30	Modeling of Simultaneous Anaerobic Methane and Ammonium Oxidation in a Membrane Biofilm Reactor. Environmental Science & Technology, 2014, 48, 9540-9547.	10.0	80
31	High-level nitrogen removal by simultaneous partial nitritation, anammox and nitrite/nitrate-dependent anaerobic methane oxidation. Water Research, 2019, 166, 115057.	11.3	80
32	Enhancing mainstream nitrogen removal by employing nitrate/nitrite-dependent anaerobic methane oxidation processes. Critical Reviews in Biotechnology, 2019, 39, 732-745.	9.0	80
33	Simultaneous removal of antibiotic resistant bacteria, antibiotic resistance genes, and micropollutants by a modified photo-Fenton process. Water Research, 2021, 197, 117075.	11.3	80
34	Biological sludge reduction and enhanced nutrient removal in a pilot-scale system with 2-step sludge alkaline fermentation and A2O process. Bioresource Technology, 2011, 102, 4091-4097.	9.6	77
35	Evaluation of mainstream nitrogen removal by simultaneous partial nitrification, anammox and denitrification (SNAD) process in a granule-based reactor. Chemical Engineering Journal, 2017, 327, 973-981.	12.7	77
36	Methane-supported nitrate removal from groundwater in a membrane biofilm reactor. Water Research, 2018, 132, 71-78.	11.3	77

#	Article	IF	CITATIONS
37	Pathways and Organisms Involved in Ammonia Oxidation and Nitrous Oxide Emission. Critical Reviews in Environmental Science and Technology, 2013, 43, 2213-2296.	12.8	76
38	Non-antibiotic pharmaceuticals promote the transmission of multidrug resistance plasmids through intra- and intergenera conjugation. ISME Journal, 2021, 15, 2493-2508.	9.8	76
39	Biogeographical distribution of denitrifying anaerobic methane oxidizing bacteria in <scp>C</scp> hinese wetland ecosystems. Environmental Microbiology Reports, 2015, 7, 128-138.	2.4	75
40	Triclosan at environmental concentrations can enhance the spread of extracellular antibiotic resistance genes through transformation. Science of the Total Environment, 2020, 713, 136621.	8.0	75
41	Energy saving achieved by limited filamentous bulking sludge under low dissolved oxygen. Bioresource Technology, 2010, 101, 1120-1126.	9.6	73
42	Synergistic effect of sulfidated nano zerovalent iron and persulfate on inactivating antibiotic resistant bacteria and antibiotic resistance genes. Water Research, 2021, 198, 117141.	11.3	73
43	Biological nitrogen removal with real-time control using step-feed SBR technology. Enzyme and Microbial Technology, 2007, 40, 1564-1569.	3.2	72
44	Filamentous and non-filamentous bulking of activated sludge encountered under nutrients limitation or deficiency conditions. Chemical Engineering Journal, 2014, 255, 453-461.	12.7	72
45	Copper Oxide Nanoparticles Induce Lysogenic Bacteriophage and Metal-Resistance Genes in <i>Pseudomonas aeruginosa</i> PAO1. ACS Applied Materials & Interfaces, 2017, 9, 22298-22307.	8.0	72
46	High abundance and diversity of nitrite-dependent anaerobic methane-oxidizing bacteria in a paddy field profile. FEMS Microbiology Letters, 2014, 360, 33-41.	1.8	69
47	A new approach to simultaneous ammonium and dissolved methane removal from anaerobic digestion liquor: A model-based investigation of feasibility. Water Research, 2015, 85, 295-303.	11.3	68
48	Sulfur-based Mixotrophic Vanadium (V) Bio-reduction towards Lower Organic Requirement and Sulfate Accumulation. Water Research, 2021, 189, 116655.	11.3	67
49	Spatial distribution of dynamics characteristic in the intermittent aeration static composting of sewage sludge. Bioresource Technology, 2011, 102, 5528-5532.	9.6	65
50	Long-term impact of anaerobic reaction time on the performance and granular characteristics of granular denitrifying biological phosphorus removal systems. Water Research, 2013, 47, 5326-5337.	11.3	65
51	Comparison of short-term dosing ferrous ion and nanoscale zero-valent iron for rapid recovery of anammox activity from dissolved oxygen inhibition. Water Research, 2019, 153, 284-294.	11.3	64
52	Suspended sludge and biofilm shaped different anammox communities in two pilot-scale one-stage anammox reactors. Bioresource Technology, 2016, 211, 273-279.	9.6	62
53	Temperature-Tolerated Mainstream Nitrogen Removal by Anammox and Nitrite/Nitrate-Dependent Anaerobic Methane Oxidation in a Membrane Biofilm Reactor. Environmental Science & Technology, 2020, 54, 3012-3021.	10.0	56
54	Artificial sweeteners stimulate horizontal transfer of extracellular antibiotic resistance genes through natural transformation. ISME Journal, 2022, 16, 543-554.	9.8	56

#	Article	IF	CITATIONS
55	Elucidating functional microorganisms and metabolic mechanisms in a novel engineered ecosystem integrating C, N, P and S biotransformation by metagenomics. Water Research, 2019, 148, 219-230.	11.3	54
56	Anaerobic ammonium oxidation is a major N-sink in aquifer systems around the world. ISME Journal, 2020, 14, 151-163.	9.8	54
57	Biological Bromate Reduction Driven by Methane in a Membrane Biofilm Reactor. Environmental Science and Technology Letters, 2017, 4, 562-566.	8.7	51
58	Bioaerosol is an important transmission route of antibiotic resistance genes in pig farms. Environment International, 2021, 154, 106559.	10.0	51
59	Unraveling individual and combined toxicity of nano/microplastics and ciprofloxacin to Synechocystis sp. at the cellular and molecular levels. Environment International, 2021, 157, 106842.	10.0	51
60	Dissolved organic matter in biologically treated sewage effluent (BTSE): Characteristics and comparison. Desalination, 2011, 278, 365-372.	8.2	50
61	Roles of reactive oxygen species in antibiotic resistant bacteria inactivation and micropollutant degradation in Fenton and photo-Fenton processes. Journal of Hazardous Materials, 2022, 430, 128408.	12.4	49
62	Determining Multiple Responses of <i>Pseudomonas aeruginosa</i> PAO1 to an Antimicrobial Agent, Free Nitrous Acid. Environmental Science & Technology, 2016, 50, 5305-5312.	10.0	48
63	Acetate Production from Anaerobic Oxidation of Methane via Intracellular Storage Compounds. Environmental Science & Technology, 2019, 53, 7371-7379.	10.0	48
64	Growth kinetics of Candidatus â€~Methanoperedens nitroreducens' enriched in a laboratory reactor. Science of the Total Environment, 2019, 659, 442-450.	8.0	48
65	Efficient photocatalytic destruction of recalcitrant micropollutants using graphitic carbon nitride under simulated sunlight irradiation. Environmental Science and Ecotechnology, 2021, 5, 100079.	13.5	48
66	Autotrophic nitrogen removal in membrane-aerated biofilms: Archaeal ammonia oxidation versus bacterial ammonia oxidation. Chemical Engineering Journal, 2016, 302, 535-544.	12.7	47
67	Stable limited filamentous bulking through keeping the competition between floc-formers and filaments in balance. Bioresource Technology, 2012, 103, 7-15.	9.6	46
68	Physiological and transcriptomic analyses reveal CuO nanoparticle inhibition of anabolic and catabolic activities of sulfate-reducing bacterium. Environment International, 2019, 125, 65-74.	10.0	46
69	Simultaneous Removal of Dissolved Methane and Nitrogen from Synthetic Mainstream Anaerobic Effluent. Environmental Science & Technology, 2020, 54, 7629-7638.	10.0	46
70	Rapid formation of granules coupling n-DAMO and anammox microorganisms to remove nitrogen. Water Research, 2021, 194, 116963.	11.3	45
71	Control filamentous bulking caused by chlorine-resistant Type 021N bacteria through adding a biocide CTAB. Water Research, 2012, 46, 6531-6542.	11.3	43
72	Hydrogen-driven microbial biogas upgrading: Advances, challenges and solutions. Water Research, 2021, 197, 117120.	11.3	43

#	Article	IF	CITATIONS
73	Microbial community structure and biodiversity of size-fractionated granules in a partial nitritation–anammox process. FEMS Microbiology Ecology, 2017, 93, .	2.7	41
74	Transcriptomics Uncovers the Response of Anammox Bacteria to Dissolved Oxygen Inhibition and the Subsequent Recovery Mechanism. Environmental Science & Technology, 2020, 54, 14674-14685.	10.0	40
75	Roles and opportunities for microbial anaerobic oxidation of methane in natural and engineered systems. Energy and Environmental Science, 2021, 14, 4803-4830.	30.8	40
76	Evidence of differential adaptation to decreased temperature by anammox bacteria. Environmental Microbiology, 2018, 20, 3514-3528.	3.8	39
77	Cometabolic biodegradation of cephalexin by enriched nitrifying sludge: Process characteristics, gene expression and product biotoxicity. Science of the Total Environment, 2019, 672, 275-282.	8.0	38
78	Insights of metallic nanoparticles and ions in accelerating the bacterial uptake of antibiotic resistance genes. Journal of Hazardous Materials, 2022, 421, 126728.	12.4	38
79	Efficient nitrogen removal from mainstream wastewater through coupling Partial Nitritation, Anammox and Methane-dependent nitrite/nitrate reduction (PNAM). Water Research, 2021, 206, 117723.	11.3	37
80	Microbial chromate reduction coupled with anaerobic oxidation of methane in a membrane biofilm reactor. Environment International, 2019, 130, 104926.	10.0	35
81	Inhibition of methanogens decreased sulfadiazine removal and increased antibiotic resistance gene development in microbial fuel cells. Bioresource Technology, 2019, 281, 188-194.	9.6	35
82	Achieving complete nitrogen removal by coupling nitritationâ€anammox and methaneâ€dependent denitrification: A modelâ€based study. Biotechnology and Bioengineering, 2016, 113, 1035-1045.	3.3	34
83	Perchlorate bio-reduction in a methane-based membrane biofilm reactor in the presence and absence of oxygen. Water Research, 2019, 157, 572-578.	11.3	34
84	Larger Anammox Granules not only Harbor Higher Species Diversity but also Support More Functional Diversity. Environmental Science & Technology, 2020, 54, 14664-14673.	10.0	34
85	Unravelling kinetic and microbial responses of enriched nitrifying sludge under long-term exposure of cephalexin and sulfadiazine. Water Research, 2020, 173, 115592.	11.3	33
86	Enhanced removal of cephalexin and sulfadiazine in nitrifying membrane-aerated biofilm reactors. Chemosphere, 2021, 263, 128224.	8.2	33
87	An evolved native microalgal consortium-snow system for the bioremediation of biogas and centrate wastewater: Start-up, optimization and stabilization. Water Research, 2021, 196, 117038.	11.3	33
88	A Novel Protocol for Model Calibration in Biological Wastewater Treatment. Scientific Reports, 2015, 5, 8493.	3.3	32
89	High-Rate Production of Short-Chain Fatty Acids from Methane in a Mixed-Culture Membrane Biofilm Reactor. Environmental Science and Technology Letters, 2018, 5, 662-667.	8.7	32
90	Achieving simultaneous nitrogen and antibiotic removal in one-stage partial nitritation-Anammox (PN/A) process. Environment International, 2020, 143, 105987.	10.0	32

#	Article	IF	CITATIONS
91	Versatility of nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO): First demonstration with real wastewater. Water Research, 2021, 194, 116912.	11.3	32
92	Simultaneous Removal of Antibiotic Resistant Bacteria, Antibiotic Resistance Genes, and Micropollutants by FeS ₂ @GO-Based Heterogeneous Photo-Fenton Process. Environmental Science & Technology, 2022, 56, 15156-15166.	10.0	31
93	Silver nanoparticles stimulate the proliferation of sulfate reducing bacterium Desulfovibrio vulgaris. Water Research, 2018, 129, 163-171.	11.3	29
94	New insights of the bacterial response to exposure of differently sized silver nanomaterials. Water Research, 2020, 169, 115205.	11.3	29
95	Model-based investigation of membrane biofilm reactors coupling anammox with nitrite/nitrate-dependent anaerobic methane oxidation. Environment International, 2020, 137, 105501.	10.0	29
96	Combination process of limited filamentous bulking and nitrogen removal via nitrite for enhancing nitrogen removal and reducing aeration requirements. Chemosphere, 2013, 91, 68-75.	8.2	27
97	Selective enrichment and metagenomic analysis of three novel comammox <i>Nitrospira</i> in a urine-fed membrane bioreactor. ISME Communications, 2021, 1, .	4.2	27
98	Metatranscriptomic analysis of adaptive response of anammox bacteria Candidatus â€~Kuenenia stuttgartiensis' to Zn(II) exposure. Chemosphere, 2020, 246, 125682.	8.2	26
99	Making good use of methane to remove oxidized contaminants from wastewater. Water Research, 2021, 197, 117082.	11.3	26
100	Achieving nitrite accumulation in a continuous system treating low-strength domestic wastewater: switchover from batch start-up to continuous operation with process control. Applied Microbiology and Biotechnology, 2012, 94, 517-526.	3.6	25
101	Simultaneous removal of micropollutants, antibiotic resistant bacteria, and antibiotic resistance genes using graphitic carbon nitride under simulated solar irradiation. Chemical Engineering Journal, 2022, 433, 133839.	12.7	25
102	Effects of feeding pattern and dissolved oxygen concentration on microbial morphology and community structure: The competition between floc-forming bacteria and filamentous bacteria. Journal of Water Process Engineering, 2014, 1, 108-114.	5.6	24
103	Toxicity Assessment of Nano-ZnO Exposure on the Human Intestinal Microbiome, Metabolic Functions, and Resistome Using an In Vitro Colon Simulator. Environmental Science & Technology, 2021, 55, 6884-6896.	10.0	24
104	Aerobic condition enhances bacteriostatic effects of silver nanoparticles in aquatic environment: an antimicrobial study on Pseudomonas aeruginosa. Scientific Reports, 2017, 7, 7398.	3.3	23
105	rDNA- and rRNA-derived communities present divergent assemblage patterns and functional traits throughout full-scale landfill leachate treatment process trains. Science of the Total Environment, 2019, 646, 1069-1079.	8.0	23
106	Effect of short-term light irradiation with varying energy densities on the activities of nitrifiers in wastewater. Water Research, 2022, 216, 118291.	11.3	23
107	Microbial Methane Conversion to Short-Chain Fatty Acids Using Various Electron Acceptors in Membrane Biofilm Reactors. Environmental Science & Technology, 2019, 53, 12846-12855.	10.0	22
108	Insight into the nitrification kinetics and microbial response of an enriched nitrifying sludge in the biodegradation of sulfadiazine. Environmental Pollution, 2019, 255, 113160.	7.5	22

#	Article	IF	CITATIONS
109	Performance and microbial community dynamics relationship within a step-feed anoxic/oxic/anoxic/oxic process (SF-A/O/A/O) for coking wastewater treatment. Science of the Total Environment, 2021, 792, 148263.	8.0	22
110	Comparison of performance, microorganism populations, and bio-physiochemical properties of granular and flocculent sludge from denitrifying phosphorus removal reactors. Chemical Engineering Journal, 2015, 262, 49-58.	12.7	21
111	Prediction of Filamentous Sludge Bulking using a State-based Gaussian Processes Regression Model. Scientific Reports, 2016, 6, 31303.	3.3	21
112	Structural Changes in Cell-Wall and Cell-Membrane Organic Materials Following Exposure to Free Nitrous Acid. Environmental Science & amp; Technology, 2020, 54, 10301-10312.	10.0	21
113	Evaluating the Role of Microbial Internal Storage Turnover on Nitrous Oxide Accumulation During Denitrification. Scientific Reports, 2015, 5, 15138.	3.3	20
114	Enhanced Microbial Chromate Reduction Using Hydrogen and Methane as Joint Electron Donors. Journal of Hazardous Materials, 2020, 395, 122684.	12.4	20
115	Characterization of the dissolved organic matter in sewage effluent of sequence batch reactor: the impact of carbon source. Frontiers of Environmental Science and Engineering, 2012, 6, 280-287.	6.0	19
116	Changes in the microbial community structure of filaments and floc formers in response to various carbon sources and feeding patterns. Applied Microbiology and Biotechnology, 2014, 98, 7633-7644.	3.6	19
117	Efficient nitrate removal from synthetic groundwater via in situ utilization of short-chain fatty acids from methane bioconversion. Chemical Engineering Journal, 2020, 393, 124594.	12.7	19
118	Structural changes in model compounds of sludge extracellular polymeric substances caused by exposure to free nitrous acid. Water Research, 2021, 188, 116553.	11.3	19
119	Light Irradiation Enables Rapid Start-Up of Nitritation through Suppressing <i>nxrB</i> Gene Expression and Stimulating Ammonia-Oxidizing Bacteria. Environmental Science & Technology, 2021, 55, 13297-13305.	10.0	19
120	Optical sorting and cultivation of denitrifying anaerobic methane oxidation archaea. Biomedical Optics Express, 2017, 8, 934.	2.9	18
121	Amphiphilic Perfluoropolyether Copolymers for the Effective Removal of Polyfluoroalkyl Substances from Aqueous Environments. Macromolecules, 2021, 54, 3447-3457.	4.8	18
122	Colonization of gut microbiota by plasmid-carrying bacteria is facilitated by evolutionary adaptation to antibiotic treatment. ISME Journal, 2022, 16, 1284-1293.	9.8	18
123	Nutrient removal performance and microbial community structure in an EBPR system under the limited filamentous bulking state. Bioresource Technology, 2013, 144, 86-93.	9.6	17
124	Spatiotemporal heterogeneity of core functional bacteria and their synergetic and competitive interactions in denitrifying sulfur conversion-assisted enhanced biological phosphorus removal. Scientific Reports, 2017, 7, 10927.	3.3	17
125	Modeling of the interaction among aerobic ammonium-oxidizing archaea/bacteria and anaerobic ammonium-oxidizing bacteria. Chemical Engineering Science, 2016, 150, 35-40.	3.8	16
126	Biogas-driven complete nitrogen removal from wastewater generated in side-stream partial nitritation. Science of the Total Environment, 2020, 745, 141153.	8.0	16

#	Article	IF	CITATIONS
127	Theoretical analysis and enhanced nitrogen removal performance of step-feed SBR. Water Science and Technology, 2008, 58, 795-802.	2.5	15
128	Novel Multiplexed Amplicon-Based Sequencing to Quantify SARS-CoV-2 RNA from Wastewater. Environmental Science and Technology Letters, 2021, 8, 683-690.	8.7	15
129	Characterizing the premise plumbing microbiome in both water and biofilms of a 50-year-old building. Science of the Total Environment, 2021, 798, 149225.	8.0	15
130	Non-caloric artificial sweeteners exhibit antimicrobial activity against bacteria and promote bacterial evolution of antibiotic tolerance. Journal of Hazardous Materials, 2022, 433, 128840.	12.4	15
131	Efficient and integrated start-up strategy for partial nitrification to nitrite treating low C/N domestic wastewater. Water Science and Technology, 2009, 60, 3243-3251.	2.5	14
132	Different clusters of Candidatus †Methanoperedens nitroreducens'-like archaea as revealed by high-throughput sequencing with new primers. Scientific Reports, 2018, 8, 7695.	3.3	14
133	Microbial Perchlorate Reduction Driven by Ethane and Propane. Environmental Science & Technology, 2021, 55, 2006-2015.	10.0	14
134	Roles of Oxygen in Methane-dependent Selenate Reduction in a Membrane Biofilm Reactor: Stimulation or Suppression. Water Research, 2021, 198, 117150.	11.3	14
135	Pilot-scale demonstration of a novel process integrating Partial Nitritation with simultaneous Anammox, Denitrification and Sludge Fermentation (PNÂ+ÂADSF) for nitrogen removal and sludge reduction. Science of the Total Environment, 2022, 815, 152835.	8.0	14
136	Data on metagenomic profiles of activated sludge from a full-scale wastewater treatment plant. Data in Brief, 2017, 15, 833-839.	1.0	13
137	A comparative proteomic analysis of Desulfovibrio vulgaris Hildenborough in response to the antimicrobial agent free nitrous acid. Science of the Total Environment, 2019, 672, 625-633.	8.0	13
138	Mitigation of antibiotic resistance in a pilot-scale system treating wastewater from high-speed railway trains. Chemosphere, 2020, 245, 125484.	8.2	13
139	Reactive nitrogen species from free nitrous acid (FNA) cause cell lysis. Water Research, 2022, 217, 118401.	11.3	13
140	Microbial selenate reduction in membrane biofilm reactors using ethane and propane as electron donors. Water Research, 2020, 183, 116008.	11.3	12
141	Feasibility of methane bioconversion to methanol by acid-tolerant ammonia-oxidizing bacteria. Water Research, 2021, 197, 117077.	11.3	12
142	Pilot-scale demonstration of one-stage partial nitritation/anammox process to treat wastewater from a coal to ethylene glycol (CtEG) plant. Environmental Research, 2022, 208, 112540.	7.5	12
143	Culture-dependent enumeration methods failed to simultaneously detect disinfectant-injured and genetically modified Escherichia coli in drinking water. Environmental Sciences: Processes and Impacts, 2017, 19, 720-726.	3.5	11
144	Simultaneous removal of antibiotic resistant bacteria and antibiotic resistance genes by molybdenum carbide assisted electrochemical disinfection. Journal of Hazardous Materials, 2022, 432, 128733.	12.4	11

#	Article	IF	CITATIONS
145	Interactions of functional microorganisms and their contributions to methane bioconversion to short-chain fatty acids. Water Research, 2021, 199, 117184.	11.3	10
146	CHAPTER 16. Denitrification Processes for Wastewater Treatment. 2-Oxoglutarate-Dependent Oxygenases, 2016, , 368-418.	0.8	10
147	The application of glycine betaine to alleviate the inhibitory effect of salinity on oneâ€stage partial nitritation/anammox process. Water Environment Research, 2021, 93, 549-558.	2.7	9
148	Bacteriophage isolated from nonâ€ŧarget bacteria demonstrates broad host range infectivity against multidrugâ€resistant bacteria. Environmental Microbiology, 2021, 23, 5569-5586.	3.8	9
149	Advanced nitrogen removal using pilot-scale SBR with intelligent control system built on three layer network. Frontiers of Environmental Science and Engineering in China, 2007, 1, 33-38.	0.8	8
150	Evaluation of the joint effects of Cu2+, Zn2+ and Mn2+ on completely autotrophic nitrogen-removal over nitrite (CANON) process. Chemosphere, 2022, 286, 131896.	8.2	8
151	Development and Experimental Evaluation of a Steady-state Model for the Step-feed Biological Nitrogen Removal Process. Chinese Journal of Chemical Engineering, 2007, 15, 411-417.	3.5	7
152	Cross-feeding interactions in short chain gaseous alkane-driven perchlorate and selenate reduction. Water Research, 2021, 200, 117215.	11.3	7
153	Combat antimicrobial resistance emergence and biofilm formation through nanoscale zero-valent iron particles. Chemical Engineering Journal, 2022, 444, 136569.	12.7	7
154	Copper stimulation on methane-supported perchlorate reduction in a membrane biofilm reactor. Journal of Hazardous Materials, 2022, 425, 127917.	12.4	6
155	Novel Bacteriophages Show Activity against Selected Australian Clinical Strains of Pseudomonas aeruginosa. Microorganisms, 2022, 10, 210.	3.6	6
156	Detection of SARS-CoV-2 Variants of Concern with Tiling Amplicon Sequencing from Wastewater. ACS ES&T Water, 2022, 2, 2185-2193.	4.6	5
157	Control Strategies to Combat Dissemination of Antibiotic Resistance in Urban Water Systems. Handbook of Environmental Chemistry, 2020, , 147-187.	0.4	4
158	Nano-Al2O3 particles affect gut microbiome and resistome in an in vitro simulator of the human colon microbial ecosystem. Journal of Hazardous Materials, 2022, 439, 129513.	12.4	4
159	An emerging unrated mobile reservoir for antibiotic resistant genes: Does transportation matter to the spread. Environmental Research, 2022, 213, 113634.	7.5	2
160	Advanced nitrogen removal by pulsed sequencing batch reactors (SBR) with real-time control. Frontiers of Environmental Science and Engineering in China, 2007, 1, 488-492.	0.8	1
161	A Novel Protocol for Model Calibration in Biological Wastewater Treatment. , 2016, , 23-47.		1