
Francisco Ortega

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4660435/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polyelectrolyte Multilayered Capsules as Biomedical Tools. Polymers, 2022, 14, 479.	4.5	14
2	Study of the Dilution-Induced Deposition of Concentrated Mixtures of Polyelectrolytes and Surfactants. Polymers, 2022, 14, 1335.	4.5	9
3	A broad perspective to particle-laden fluid interfaces systems: from chemically homogeneous particles to active colloids. Advances in Colloid and Interface Science, 2022, 302, 102620.	14.7	31
4	Layer-by-Layer Materials for the Fabrication of Devices with Electrochemical Applications. Energies, 2022, 15, 3399.	3.1	9
5	Pickering Emulsions: A Novel Tool for Cosmetic Formulators. Cosmetics, 2022, 9, 68.	3.3	19
6	Evaporation of Sessile Droplets of Polyelectrolyte/Surfactant Mixtures on Silicon Wafers. Colloids and Interfaces, 2021, 5, 12.	2.1	9
7	Build-Up of a 3D Organogel Network within the Bilayer Shell of Nanoliposomes. A Novel Delivery System for Vitamin D ₃ : Preparation, Characterization, and Physicochemical Stability. Journal of Agricultural and Food Chemistry, 2021, 69, 2585-2594.	5.2	18
8	Physico-chemical study of polymer mixtures formed by a polycation and a zwitterionic copolymer in aqueous solution and upon adsorption onto negatively charged surfaces. Polymer, 2021, 217, 123442.	3.8	18
9	Polyelectrolyte Multilayers on Soft Colloidal Nanosurfaces: A New Life for the Layer-By-Layer Method. Polymers, 2021, 13, 1221.	4.5	34
10	Monolayers of Cholesterol and Cholesteryl Stearate at the Water/Vapor Interface: A Physico-Chemical Study of Components of the Meibum Layer. Colloids and Interfaces, 2021, 5, 30.	2.1	7
11	Fabrication of Robust Capsules by Sequential Assembly of Polyelectrolytes onto Charged Liposomes. Langmuir, 2021, 37, 6189-6200.	3.5	17
12	Static and Dynamic Selfâ€Assembly of Pearlâ€Likeâ€Chains of Magnetic Colloids Confined at Fluid Interfaces. Small, 2021, 17, e2101188.	10.0	16
13	Particle-laden fluid/fluid interfaces: physico-chemical foundations. Journal of Physics Condensed Matter, 2021, 33, 333001.	1.8	21
14	Nanoemulsions for the Encapsulation of Hydrophobic Actives. Cosmetics, 2021, 8, 45.	3.3	7
15	Pattern Formation upon Evaporation of Sessile Droplets of Polyelectrolyte/Surfactant Mixtures on Silicon Wafers. International Journal of Molecular Sciences, 2021, 22, 7953.	4.1	7
16	Performance of Oleic Acid and Soybean Oil in the Preparation of Oil-in-Water Microemulsions for Encapsulating a Highly Hydrophobic Molecule. Colloids and Interfaces, 2021, 5, 50.	2.1	4
17	Hyaluronic Acid Hydrogel Particles Obtained Using Liposomes as Templates. Materials Proceedings, 2021, 7, 7.	0.2	0
18	Modular Interfacial Microswimmers. Physical Review Applied, 2021, 16, .	3.8	4

2

#	Article	IF	CITATIONS
19	Controlled disassembly of colloidal aggregates confined at fluid interfaces using magnetic dipolar interactions. Journal of Colloid and Interface Science, 2020, 560, 388-397.	9.4	13
20	Effect of molecular structure of eco-friendly glycolipid biosurfactants on the adsorption of hair-care conditioning polymers. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110578.	5.0	48
21	Effect of a natural amphoteric surfactant in the bulk and adsorption behavior of polyelectrolyte-surfactant mixtures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124178.	4.7	32
22	Enhanced solubilization of an insect juvenile hormone (JH) mimetic (piryproxyfen) using eugenol in water nanoemulsions stabilized by a triblock copolymer of poly(ethylenglycol) and poly(propilenglycol). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 606, 125513.	4.7	10
23	Collective Transport of Magnetic Microparticles at a Fluid Interface through Dynamic Selfâ€Assembled Lattices. Advanced Functional Materials, 2020, 30, 2002206.	14.9	13
24	Behavior of the water/vapor interface of chitosan solutions with an anionic surfactant: effect of polymer–surfactant interactions. Physical Chemistry Chemical Physics, 2020, 22, 23360-23373.	2.8	14
25	Deposition of Synthetic and Bio-Based Polycations onto Negatively Charged Solid Surfaces: Effect of the Polymer Cationicity, Ionic Strength, and the Addition of an Anionic Surfactant. Colloids and Interfaces, 2020, 4, 33.	2.1	32
26	Adsorption of Mixtures of a Pegylated Lipid with Anionic and Zwitterionic Surfactants at Solid/Liquid. Colloids and Interfaces, 2020, 4, 47.	2.1	7
27	Surfactantless Emulsions Containing Eugenol for Imidacloprid Solubilization: Physicochemical Characterization and Toxicity against Insecticide-Resistant Cimex lectularius. Molecules, 2020, 25, 2290.	3.8	13
28	A closer physico-chemical look to the Layer-by-Layer electrostatic self-assembly of polyelectrolyte multilayers. Advances in Colloid and Interface Science, 2020, 282, 102197.	14.7	100
29	Impact of the bulk aggregation on the adsorption of oppositely charged polyelectrolyte-surfactant mixtures onto solid surfaces. Advances in Colloid and Interface Science, 2020, 282, 102203.	14.7	27
30	Equilibrium and kinetically trapped aggregates in polyelectrolyte–oppositely charged surfactant mixtures. Current Opinion in Colloid and Interface Science, 2020, 48, 91-108.	7.4	45
31	Influence of Carbon Nanosheets on the Behavior of 1,2-Dipalmitoyl-sn-glycerol-3-phosphocholine Langmuir Monolayers. Processes, 2020, 8, 94.	2.8	13
32	Two Different Scenarios for the Equilibration of Polycation—Anionic Solutions at Water–Vapor Interfaces. Coatings, 2019, 9, 438.	2.6	28
33	Surfactant-Like Behavior for the Adsorption of Mixtures of a Polycation and Two Different Zwitterionic Surfactants at the Water/Vapor Interface. Molecules, 2019, 24, 3442.	3.8	25
34	Giant Vesicles with Encapsulated Magnetic Nanowires as Versatile Carriers, Transported via Rotating and Nonhomogeneous Magnetic Fields. Particle and Particle Systems Characterization, 2019, 36, 1900239.	2.3	0
35	Oil-In-Water Microemulsions for Thymol Solubilization. Colloids and Interfaces, 2019, 3, 64.	2.1	23
36	Drops and Bubbles as Controlled Traveling Reactors and/or Carriers Including Microfluidics Aspects. Springer Proceedings in Physics, 2019, , 255-276.	0.2	0

#	Article	IF	CITATIONS
37	Alfonso Rubio y Juan David Murillo Sandoval. Historia de la edición en Colombia 1738-1851 Anuario Colombiano De Historia Social Y De La Cultura, 2019, 46, 322-325.	0.1	0
38	Study of the Liquid/Vapor Interfacial Properties of Concentrated Polyelectrolyte–Surfactant Mixtures Using Surface Tensiometry and Neutron Reflectometry: Equilibrium, Adsorption Kinetics, and Dilational Rheology. Journal of Physical Chemistry C, 2018, 122, 4419-4427.	3.1	42
39	Towards understanding the behavior of polyelectrolyte–surfactant mixtures at the water/vapor interface closer to technologically-relevant conditions. Physical Chemistry Chemical Physics, 2018, 20, 1395-1407.	2.8	45
40	Evaporation of Nanosuspensions on Substrates with Different Hydrophobicity. ACS Applied Materials & Interfaces, 2018, 10, 3082-3093.	8.0	25
41	Preparation and Application in Drug Storage and Delivery of Agarose Nanoparticles. International Journal of Polymer Science, 2018, 2018, 1-9.	2.7	17
42	On the autonomous motion of active drops or bubbles. Journal of Colloid and Interface Science, 2018, 527, 180-186.	9.4	14
43	Equilibration of a Polycation–Anionic Surfactant Mixture at the Water/Vapor Interface. Langmuir, 2018, 34, 7455-7464.	3.5	33
44	Environmentally friendly platforms for encapsulation of an essential oil: Fabrication, characterization and application in pests control. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 473-481.	4.7	16
45	Magnetic Biohybrid Vesicles Transported by an Internal Propulsion Mechanism. ACS Applied Materials & Interfaces, 2018, 10, 29367-29377.	8.0	6
46	JColloids: Image analysis for video-microscopy studies of colloidal suspensions. Computer Physics Communications, 2018, 231, 243-244.	7.5	4
47	Shear rheology of fluid interfaces: Closing the gap between macro- and micro-rheology. Current Opinion in Colloid and Interface Science, 2018, 37, 33-48.	7.4	40
48	Formation of surfactant free microemulsions in the ternary system water/eugenol/ethanol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 521, 133-140.	4.7	35
49	Layer-by-Layer polyelectrolyte assemblies for encapsulation and release of active compounds. Advances in Colloid and Interface Science, 2017, 249, 290-307.	14.7	120
50	Phase Diagram of Fatty Acid Langmuir Monolayers from Rheological Measurements. Langmuir, 2017, 33, 4280-4290.	3.5	13
51	Thermo- and soluto-capillarity: Passive and active drops. Advances in Colloid and Interface Science, 2017, 247, 52-80.	14.7	28
52	Novel polymeric micelles for insect pest control: encapsulation of essential oil monoterpenes inside a triblock copolymer shell for head lice control. PeerJ, 2017, 5, e3171.	2.0	51
53	3D solid supported inter-polyelectrolyte complexes obtained by the alternate deposition of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate). Beilstein Journal of Nanotechnology, 2016, 7, 197-208.	2.8	19
54	Adsorption of poly(diallyldimethylammonium chloride)—sodium methyl-cocoyl-taurate complexes onto solid surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 505, 150-157.	4.7	36

#	Article	IF	CITATIONS
55	Comment on "Formation of polyelectrolyte multilayers: ionic strengths and growth regimes―by K. Tang and A. M. Besseling, Soft Matter, 2016, 12 , 1032. Soft Matter, 2016, 12, 8460-8463.	2.7	10
56	Polymer–surfactant systems in bulk and at fluid interfaces. Advances in Colloid and Interface Science, 2016, 233, 38-64.	14.7	175
57	Particle and Particle-Surfactant Mixtures at Fluid Interfaces: Assembly, Morphology, and Rheological Description. Advances in Condensed Matter Physics, 2015, 2015, 1-17.	1.1	55
58	Amphiphilic 2-ethyl hexyl methacrylate- <i>b-N</i> , <i>N</i> ′-dimethylacrylamide diblock copolymer monolayer behaviour at the air â^' water interface ^{â€} . Polymer International, 2015, 64, 740-7	749 ¹ .	2
59	Magnetic Microwire Probes for the Magnetic Rod Interfacial Stress Rheometer. Langmuir, 2015, 31, 1410-1420.	3.5	31
60	Adsorption of polyelectrolytes and polyelectrolytes-surfactant mixtures at surfaces: a physico-chemical approach to a cosmetic challenge. Advances in Colloid and Interface Science, 2015, 222, 461-487.	14.7	110
61	Field-induced sublimation in perfect two-dimensional colloidal crystals. Physical Review E, 2014, 89, 012306.	2.1	12
62	Particle laden fluid interfaces: Dynamics and interfacial rheology. Advances in Colloid and Interface Science, 2014, 206, 303-319.	14.7	164
63	Contact angle of micro- and nanoparticles at fluid interfaces. Current Opinion in Colloid and Interface Science, 2014, 19, 355-367.	7.4	126
64	Stratified Interpolyelectrolyte Complexes: Fabrication, Structure and Properties. Engineering Materials, 2014, , 299-347.	0.6	4
65	Evaporation of Droplets of Surfactant Solutions. Langmuir, 2013, 29, 10028-10036.	3.5	87
66	Evaporation kinetics of sessile droplets of aqueous suspensions of inorganic nanoparticles. Journal of Colloid and Interface Science, 2013, 403, 49-57.	9.4	26
67	Salt effects on the air/solution interfacial properties of PEO-containing copolymers: Equilibrium, adsorption kinetics and surface rheological behavior. Journal of Colloid and Interface Science, 2013, 400, 49-58.	9.4	35
68	Polyelectrolyte assemblies for drug storage and delivery: multilayers, nanocapsules and multicapsules. , 2013, , 94-145.		2
69	Shear Rheology of Interfaces: Micro Rheological Methods. Understanding Complex Systems, 2013, , 183-198.	0.6	0
70	Growth of Polyelectrolyte Layers Formed by Poly(4-styrenesulfonate sodium salt) and Two Different Polycations: New Insights from Study of Adsorption Kinetics. Journal of Physical Chemistry C, 2012, 116, 15474-15483.	3.1	59
71	Phase Behavior of Dense Colloidal Binary Monolayers. Langmuir, 2012, 28, 16555-16566.	3.5	32
72	Wettability of silicananoparticle–surfactant nanocomposite interfacial layers. Soft Matter, 2012, 8, 837-843.	2.7	142

#	Article	IF	CITATIONS
73	Adsorption of β-Casein–Surfactant Mixed Layers at the Air–Water Interface Evaluated by Interfacial Rheology. Journal of Physical Chemistry B, 2012, 116, 4898-4907.	2.6	24
74	Spreading and Evaporation of Surfactant Solution Droplets. , 2012, , 1-6.		2
75	Influence of the molecular architecture on the adsorption onto solid surfaces: comb-like polymers. Physical Chemistry Chemical Physics, 2011, 13, 16416.	2.8	26
76	Adsorption of Conditioning Polymers on Solid Substrates with Different Charge Density. ACS Applied Materials & Interfaces, 2011, 3, 3181-3188.	8.0	50
77	Surface rheology: macro- and microrheology of poly(tert-butyl acrylate) monolayers. Soft Matter, 2011, 7, 7761.	2.7	53
78	Fluid to soft-glass transition in a quasi-2D system: thermodynamic and rheological evidences for a Langmuir monolayer. Physical Chemistry Chemical Physics, 2011, 13, 9534.	2.8	24
79	Influence of the percentage of acetylation on the assembly of LbL multilayers of poly(acrylic acid) and chitosan. Physical Chemistry Chemical Physics, 2011, 13, 18200.	2.8	45
80	Freezing Transition and Interaction Potential in Monolayers of Microparticles at Fluid Interfaces. Langmuir, 2011, 27, 3391-3400.	3.5	51
81	pH-Induced Changes in the Fabrication of Multilayers of Poly(acrylic acid) and Chitosan: Fabrication, Properties, and Tests as a Drug Storage and Delivery System. Langmuir, 2011, 27, 6836-6845.	3.5	76
82	Dielectric and molecular dynamics study of the secondary relaxations of poly(styrene-co-methylmethacrylate) copolymers: Influence of the molecular architecture. European Physical Journal E, 2011, 34, 1-14.	1.6	7
83	Effect of the molecular structure on the adsorption of conditioning polyelectrolytes on solid substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 375, 209-218.	4.7	53
84	Evidence of the influence of adsorption kinetics on the internal reorganization of polyelectrolyte multilayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384, 274-281.	4.7	47
85	Rheology of poly(methyl methacrylate) Langmuir monolayers: Percolation transition to a soft glasslike system. Journal of Chemical Physics, 2011, 134, 104704.	3.0	28
86	Spontaneous Vesicles Modulated by Polymers. Polymers, 2011, 3, 1255-1267.	4.5	3
87	Interfacial microrheology: Particle tracking and related techniques. Current Opinion in Colloid and Interface Science, 2010, 15, 237-245.	7.4	100
88	Equilibrium and dynamic surface properties of trisiloxane aqueous solutions. Part 2. Theory and comparison with experiment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 365, 204-209.	4.7	15
89	Equilibrium and dynamic surface properties of trisiloxane aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 365, 199-203.	4.7	30
90	Polyelectrolyte Multilayers Containing Triblock Copolymers of Different Charge Ratio. Langmuir, 2010, 26, 11494-11502.	3.5	40

#	Article	IF	CITATIONS
91	Reptation in langmuir polymer monolayers. Soft Matter, 2010, 6, 4407.	2.7	40
92	Effect of the spreading solvent on the three-phase contact angle of microparticles attached at fluid interfaces. Physical Chemistry Chemical Physics, 2010, 12, 14115.	2.8	54
93	Adsorption Kinetics and Mechanical Properties of Ultrathin Polyelectrolyte Multilayers: Liquid-Supported versus Solid-Supported Films. Journal of Physical Chemistry B, 2009, 113, 7128-7137.	2.6	81
94	Stationary Electric Birefringence of Flexible Polyelectrolyte Solutions: Experimental Evidence of Different Counterion Polarization Mechanisms. Macromolecules, 2009, 42, 5843-5850.	4.8	7
95	Temperature and Concentration Effects on the Equilibrium and Dynamic Behavior of a Langmuir Monolayer: From Fluid to Gel-like Behavior. Langmuir, 2009, 25, 11528-11532.	3.5	20
96	Salt-induced changes in the growth of polyelectrolyte layers of poly(diallyl-dimethylammonium) Tj ETQq0 0 0 rgBT	lOyerlock 2.7	10 Tf 50 54
97	Molecular Weight Dependence of the Shear Rheology of Poly(methyl methacrylate) Langmuir Films: A Comparison between Two Different Rheometry Techniques. Langmuir, 2009, 25, 7393-7400.	3.5	34
98	Equilibrium and Surface Rheology of Monolayers of Insoluble Polycations with Side Chains. Langmuir, 2009, 25, 12561-12568.	3.5	7
99	A Physicochemical Characterization of the Interaction between DC-Chol/DOPE Cationic Liposomes and DNA. Journal of Physical Chemistry B, 2008, 112, 12555-12565.	2.6	48
100	MIRAgel. JAMA Ophthalmology, 2007, 125, 511.	2.4	43
101	Polymer monolayers with a small viscoelastic linear regime: Equilibrium and rheology of poly(octadecyl acrylate) and poly(vinyl stearate). Journal of Chemical Physics, 2007, 126, 124904.	3.0	62
102	Adsorption of Water-Soluble Polymers with Surfactant Character. Dilational Viscoelasticity. Langmuir, 2007, 23, 3802-3808.	3.5	36
103	Surface rheology, equilibrium and dynamic features at interfaces, with emphasis on efficient tools for probing polymer dynamics at interfaces. Advances in Colloid and Interface Science, 2007, 134-135, 175-189.	14.7	62
104	Structure and size of spontaneously formed aggregates in Aerosol OT/PEG mixtures: Effects of polymer size and composition. Journal of Colloid and Interface Science, 2007, 316, 762-770.	9.4	13
105	Dynamics in Ultrathin Films: Particle Tracking Microrheology of Langmuir Monolayers. The Open Physical Chemistry Journal, 2007, 1, 25-32.	0.4	17
106	Fourier-transform rheology of polymer Langmuir monolayers: Analysis of the non-linear and plastic behaviors. Advances in Colloid and Interface Science, 2006, 122, 67-77.	14.7	85
107	Equilibrium and dynamics of Langmuir monolayers when the interface is a selective solvent: Polystyrene-b-poly(t-butyl acrylate) block copolymers. Journal of Chemical Physics, 2006, 125, 074706.	3.0	17
108	Langmuir monolayers of the zwitterionic surfactant hexadecyl 1-N-l-tryptophan glycerol ether. Journal of Colloid and Interface Science, 2005, 283, 144-152.	9.4	19

#	Article	IF	CITATIONS
109	Surface Rheology of Two-Dimensional Percolating Networks: Langmuir Films of Polymer Pancakes. Physical Review Letters, 2005, 95, 056103.	7.8	39
110	Collective and self-diffusion coefficients in an ionic critical mixture: 3-methylpyridine+water+NaBr. Journal of Chemical Physics, 2005, 122, 104501.	3.0	12
111	Surface Light-Scattering at the Airâ `Liquid Interface:Â From Newtonian to Viscoelastic Polymer Solutions. Journal of Physical Chemistry B, 2005, 109, 4694-4699.	2.6	18
112	Equilibrium Behavior and Dilational Rheology of Polyelectrolyte/Insoluble Surfactant Adsorption Films:Â Didodecyldimethylammonium Bromide and Sodium Poly(styrenesulfonate). Journal of Physical Chemistry B, 2005, 109, 18316-18323.	2.6	41
113	Long-Time Relaxation Dynamics of Langmuir Films of a Glass-Forming Polymer: Evidence of Glasslike Dynamics in Two Dimensions. Physical Review Letters, 2004, 92, 255503.	7.8	42
114	Concentration Fluctuations and Surface Adsorption in Hydrogen-Bonded Mixtures. Journal of Physical Chemistry B, 2004, 108, 10019-10024.	2.6	4
115	Experimental Study of the Dynamic Properties of Monolayers of PSâ^'PEO Block Copolymers:Â The Attractive Monomer Surface Case. Macromolecules, 2003, 36, 4068-4077.	4.8	43
116	Anomalous Damping of the Capillary Waves at the Airâ^'Water Interface of a Soluble Triblock Copolymer. Langmuir, 2003, 19, 2147-2154.	3.5	40
117	Aggregation Process of the Mixed Ternary System Dodecylethyldimethylammonium Bromide/Dodecylpyridinium Chloride/H2O:  An Experimental and Theoretical Approach. Langmuir, 2003, 19, 4923-4932.	3.5	27
118	Crossover critical phenomena in an aqueous electrolyte solution: Light scattering, density and viscosity of the 3-methylpyridine+water+NaBr system. Journal of Chemical Physics, 2003, 119, 4428-4436.	3.0	36
119	Relaxation Dynamics of Langmuir Polymer Films: A Power-Law Analysis. Physical Review Letters, 2003, 91, 268302.	7.8	50
120	Capillary Waves in Ionic Surfactant Solutions:Â Effects of the Electrostatic Adsorption Barrier and Analysis in Terms of a New Dispersion Equation. Journal of Physical Chemistry B, 2002, 106, 5636-5644.	2.6	21
121	Dilational rheology of monolayers of a miscible polymer blend: From good- to poor-solvent conditions. European Physical Journal E, 2002, 9, 375-385.	1.6	21
122	An Experimental Study of the Stability and Dynamics of Langmuir Films of Fullerene Derivatives and Their Mixtures with Pentadecanoic Acid. Langmuir, 2001, 17, 3317-3328.	3.5	13
123	Light Scattering and Electrical Conductivity Studies of the Aerosol OT Toluene Waterâ^'Inâ^'Oil Microemulsions. Journal of Physical Chemistry B, 2001, 105, 10163-10168.	2.6	18
124	Thermodynamic and Spectroscopic Study of a Molecular Rotaxane Containing a Bolaform Surfactant and β-Cyclodextrin. Langmuir, 2001, 17, 1392-1398.	3.5	41
125	Dielectric relaxation of poly(ethylenglycol)- b-poly(propylenglycol)-b-poly(ethylenglycol) copolymers above the glass transition temperature. European Physical Journal E, 2001, 4, 173-182.	1.6	13
126	Dilational rheology of Langmuir polymer monolayers: Poor-solvent conditions. Journal of Chemical Physics, 2001, 115, 530-539.	3.0	55

#	Article	IF	CITATIONS
127	Thermoelastic behaviour of polyvinylacetate monolayers at the air-water interface: Evidences for liquid-solid phase transition. European Physical Journal B, 2000, 13, 745-754.	1.5	24
128	Critical behaviour of complex systems. Journal of Physics Condensed Matter, 2000, 12, A459-A463.	1.8	9
129	Monolayers of Symmetric Triblock Copolymers at the Airâ^'Water Interface. 2. Adsorption Kinetics. Langmuir, 2000, 16, 1094-1101.	3.5	61
130	Viscoelastic Behavior of 1-Dodecanol Monolayers Undergoing a Liquidâ	3.5	33
131	Monolayers of Symmetric Triblock Copolymers at the Airâ^'Water Interface. 1. Equilibrium Properties. Langmuir, 2000, 16, 1083-1093.	3.5	90
132	Nonexponential Behavior Near the Critical Point of an Ionic Micellar System. International Journal of Thermophysics, 1999, 20, 1765-1778.	2.1	2
133	Calorimetric and dielectric study of a blend containing a conductive polymer: poly(3-octylthiophene)+poly(ethylene-co-vinylacetate). Polymer, 1999, 40, 5833-5842.	3.8	14
134	Rheology of a Miscible Polymer Blend at the Airâ^Water Interface. Quasielastic Surface Light Scattering Study and Analysis in Terms of Static and Dynamic Scaling Laws. Journal of Physical Chemistry B, 1999, 103, 2061-2071.	2.6	34
135	Study of the Reaction 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane + OH-in Nonionic Micellar Solutions. Langmuir, 1999, 15, 7876-7879.	3.5	10
136	Monolayers of hydrogen-bonded polymer blends at the air-water interface: poly(vinylacetate)+poly (4-hydroxystyrene). Colloid and Polymer Science, 1998, 276, 960-967.	2.1	11
137	Two-exponential correlation functions near the critical point of a micellar system. Physical Review E, 1998, 58, 2151-2160.	2.1	13
138	Dilatational rheology of insoluble polymer monolayers: Poly(vinylacetate). Physical Review E, 1998, 58, 7629-7641.	2.1	91
139	Dynamic Light Scattering and Infrared Spectroscopic Studies of the Interaction of Poly(vinylpyrrolidone) Polymers with Aerosol OT/Isooctane Water-in-Oil Microemulsions. Langmuir, 1997, 13, 6095-6100.	3.5	15
140	Dynamic Light Scattering from Mixtures of Two Polystyrene Samples in Dilute and Semidilute Solutions. Macromolecules, 1996, 29, 5948-5954.	4.8	10
141	Double-exponential relaxation near the critical point of an ionic micellar system. Physical Review E, 1996, 54, 5302-5308.	2.1	10
142	Partial specific volume of poly(D-β-hydroxybutyrate) in chloroaliphatic solvents. Polymer International, 1995, 36, 9-12.	3.1	1
143	Critical behavior of a cationic-surfactant–water–salt system near and far from the Krafft temperature. Physical Review E, 1995, 52, 1871-1876.	2.1	6
144	Dynamicâ€mechanical and light scattering study of the glass transition of poly(vinylacetate) and a poly(vinylacetate) +poly(4â€hydroxystyrene) blend. Journal of Chemical Physics, 1994, 100, 3258-3267.	3.0	14

#	Article	IF	CITATIONS
145	Experimental study of the approach to a double critical point in the poly(styrene) plus acetone system: Test of fluctuation-isomorphism theory. Physical Review E, 1994, 49, 1404-1410.	2.1	9
146	Critical behavior of ionic micellar systems at different salt concentrations. Journal of Chemical Physics, 1994, 101, 6874-6879.	3.0	35
147	Micellar Formation by Thallium(I) n-Alkanoates in Water. Langmuir, 1994, 10, 971-973.	3.5	1
148	Effect of pressure on the coexistence curve of methanol+n-heptane in the near critical region. Chemical Physics, 1993, 173, 457-466.	1.9	5
149	Experimental study of the renormalization of \hat{I}^2 near a double critical point: The 2-butanol and water system. Physical Review B, 1993, 47, 630-637.	3.2	18
150	Binary phase diagrams of lead(II) n-alkanoates and n-alkanoic acids. Pure and Applied Chemistry, 1992, 64, 65-71.	1.9	12
151	Single-electron transfer in aromatic nucleophilic substitution on dinitrobenzonitriles. Journal of the American Chemical Society, 1992, 114, 7708-7718.	13.7	34
152	Mechanism of reaction of hydroxide ion with dinitrochlorobenzenes. Journal of the American Chemical Society, 1991, 113, 238-246.	13.7	46
153	Micellar effects upon rates of SN2 reactions of chloride ion. II. Effects of cationic headgroups. The Journal of Physical Chemistry, 1990, 94, 5068-5073.	2.9	35
154	Single-electron transfer in deacylation of ethyl dinitrobenzoates. Journal of the American Chemical Society, 1990, 112, 9336-9344.	13.7	13
155	Micellar effects upon rates of SN2 reactions of chloride ion. I. Effects of variations in the hydrophobic tails. The Journal of Physical Chemistry, 1990, 94, 5062-5068.	2.9	36
156	Static and dynamic light scattering study of strongly interacting micelles: hypernetted chain vs dilute gas approximation. The Journal of Physical Chemistry, 1990, 94, 501-504.	2.9	27
157	Counterion micellar effects upon the reaction of low-spin diimine iron(II) complexes. Canadian Journal of Chemistry, 1989, 67, 305-309.	1.1	9
158	Micellar enhancements of rates of SN2 reactions of halide ions: the effect of head group size. The Journal of Physical Chemistry, 1989, 93, 1497-1502.	2.9	129
159	Interaction of nitroarenes with hydroxide ion. An AM1 molecular orbital treatment. Journal of the American Chemical Society, 1989, 111, 1041-1047.	13.7	28
160	NMR study of the location of bromide ion and methyl naphthalene-2-sulfonate in cationic micelles: relation to reactivity. The Journal of Physical Chemistry, 1989, 93, 1490-1497.	2.9	88
161	Multistep reaction analysis. A numerical approach based on relaxation theory. International Journal of Chemical Kinetics, 1988, 20, 195-215.	1.6	8
162	Single-electron transfer in aromatic nucleophilic addition and substitution in aqueous media. Journal of the American Chemical Society, 1988, 110, 3503-3512.	13.7	21

#	Article	IF	CITATIONS
163	Proton exchange and NMR line broadening in aromatic nucleophilic addition and substitution. Journal of the American Chemical Society, 1988, 110, 3495-3503.	13.7	21
164	Single-electron transfer in aromatic nucleophilic substitution in reaction of 1-substituted 2,4-dinitronaphthalenes with hydroxide ion. Journal of the American Chemical Society, 1988, 110, 3512-3518.	13.7	20
165	An electrostatic approach for explaining the kinetic results in the reactive counterion surfactants CTAOH and CTACN. The Journal of Physical Chemistry, 1987, 91, 837-840.	2.9	67
166	A complex analysis of kinetic results for the base hydrolysis of iron(II) complexes: An advanced undergraduate kinetic experiment. Journal of Chemical Education, 1986, 63, 448.	2.3	1
167	Micellar effects upon the reaction of low-spin diimine-iron(II) complexes with hydroxide and cyanide ions. The Journal of Physical Chemistry, 1986, 90, 2408-2413.	2.9	17
168	Micellar effect upon the reaction of tris(4,7-diphenyl-1,10-phenanthrolinedisulphonato)iron(II) ion with hydroxide in water. Transition Metal Chemistry, 1986, 11, 351-355.	1.4	4
169	Kinetics of the reaction of tris(4,7-diphenyl-1,10-phenanthroline-disulphonate)iron(II) ion with hydroxide ion in water. Transition Metal Chemistry, 1984, 9, 331-334.	1.4	7
170	Inhibition effect of cationic micelles on the hydrolysis of acetylsalicylic acid. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1983, 80, 543-545.	0.2	11
171	Development of an Environmentally Friendly Larvicidal Formulation Based on Essential Oil Compound Blend to Control <i>Aedes aegypti</i> Larvae: Correlations between Physicochemical Properties and Insecticidal Activity. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	12
172	Rheology Studies Of Spread And Adsorbed Polymer Layers. , 0, , 178-252.		2