
Francisco Ortega

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4660435/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymer–surfactant systems in bulk and at fluid interfaces. Advances in Colloid and Interface Science, 2016, 233, 38-64.	14.7	175

Salt-induced changes in the growth of polyelectrolyte layers of poly(diallyl-dimethylammonium) Tj ETQq0 0 0 rgBT $\frac{10}{2.7}$ Tf 50 70 $\frac{10}{2.7}$ Tf 50 \frac

3	Particle laden fluid interfaces: Dynamics and interfacial rheology. Advances in Colloid and Interface Science, 2014, 206, 303-319.	14.7	164
4	Wettability of silicananoparticle–surfactant nanocomposite interfacial layers. Soft Matter, 2012, 8, 837-843.	2.7	142
5	Micellar enhancements of rates of SN2 reactions of halide ions: the effect of head group size. The Journal of Physical Chemistry, 1989, 93, 1497-1502.	2.9	129
6	Contact angle of micro- and nanoparticles at fluid interfaces. Current Opinion in Colloid and Interface Science, 2014, 19, 355-367.	7.4	126
7	Layer-by-Layer polyelectrolyte assemblies for encapsulation and release of active compounds. Advances in Colloid and Interface Science, 2017, 249, 290-307.	14.7	120
8	Adsorption of polyelectrolytes and polyelectrolytes-surfactant mixtures at surfaces: a physico-chemical approach to a cosmetic challenge. Advances in Colloid and Interface Science, 2015, 222, 461-487.	14.7	110
9	Interfacial microrheology: Particle tracking and related techniques. Current Opinion in Colloid and Interface Science, 2010, 15, 237-245.	7.4	100
10	A closer physico-chemical look to the Layer-by-Layer electrostatic self-assembly of polyelectrolyte multilayers. Advances in Colloid and Interface Science, 2020, 282, 102197.	14.7	100
11	Dilatational rheology of insoluble polymer monolayers: Poly(vinylacetate). Physical Review E, 1998, 58, 7629-7641.	2.1	91
12	Monolayers of Symmetric Triblock Copolymers at the Airâ^'Water Interface. 1. Equilibrium Properties. Langmuir, 2000, 16, 1083-1093.	3.5	90
13			
	NMR study of the location of bromide ion and methyl naphthalene-2-sulfonate in cationic micelles: relation to reactivity. The Journal of Physical Chemistry, 1989, 93, 1490-1497.	2.9	88
14		2.9 3.5	88
14 15	relation tó reactivity. The Journal of Physical Chemistry, 1989, 93, 1490-1497.		
	relation to reactivity. The Journal of Physical Chemistry, 1989, 93, 1490-1497. Evaporation of Droplets of Surfactant Solutions. Langmuir, 2013, 29, 10028-10036. Fourier-transform rheology of polymer Langmuir monolayers: Analysis of the non-linear and plastic	3.5	87
15	 relation to reactivity. The Journal of Physical Chemistry, 1989, 93, 1490-1497. Evaporation of Droplets of Surfactant Solutions. Langmuir, 2013, 29, 10028-10036. Fourier-transform rheology of polymer Langmuir monolayers: Analysis of the non-linear and plastic behaviors. Advances in Colloid and Interface Science, 2006, 122, 67-77. Adsorption Kinetics and Mechanical Properties of Ultrathin Polyelectrolyte Multilayers: 	3.5 14.7	87 85

#	Article	IF	CITATIONS
19	Polymer monolayers with a small viscoelastic linear regime: Equilibrium and rheology of poly(octadecyl acrylate) and poly(vinyl stearate). Journal of Chemical Physics, 2007, 126, 124904.	3.0	62
20	Surface rheology, equilibrium and dynamic features at interfaces, with emphasis on efficient tools for probing polymer dynamics at interfaces. Advances in Colloid and Interface Science, 2007, 134-135, 175-189.	14.7	62
21	Monolayers of Symmetric Triblock Copolymers at the Airâ^Water Interface. 2. Adsorption Kinetics. Langmuir, 2000, 16, 1094-1101.	3.5	61
22	Growth of Polyelectrolyte Layers Formed by Poly(4-styrenesulfonate sodium salt) and Two Different Polycations: New Insights from Study of Adsorption Kinetics. Journal of Physical Chemistry C, 2012, 116, 15474-15483.	3.1	59
23	Dilational rheology of Langmuir polymer monolayers: Poor-solvent conditions. Journal of Chemical Physics, 2001, 115, 530-539.	3.0	55
24	Particle and Particle-Surfactant Mixtures at Fluid Interfaces: Assembly, Morphology, and Rheological Description. Advances in Condensed Matter Physics, 2015, 2015, 1-17.	1.1	55
25	Effect of the spreading solvent on the three-phase contact angle of microparticles attached at fluid interfaces. Physical Chemistry Chemical Physics, 2010, 12, 14115.	2.8	54
26	Surface rheology: macro- and microrheology of poly(tert-butyl acrylate) monolayers. Soft Matter, 2011, 7, 7761.	2.7	53
27	Effect of the molecular structure on the adsorption of conditioning polyelectrolytes on solid substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 375, 209-218.	4.7	53
28	Freezing Transition and Interaction Potential in Monolayers of Microparticles at Fluid Interfaces. Langmuir, 2011, 27, 3391-3400.	3.5	51
29	Novel polymeric micelles for insect pest control: encapsulation of essential oil monoterpenes inside a triblock copolymer shell for head lice control. PeerJ, 2017, 5, e3171.	2.0	51
30	Relaxation Dynamics of Langmuir Polymer Films: A Power-Law Analysis. Physical Review Letters, 2003, 91, 268302.	7.8	50
31	Adsorption of Conditioning Polymers on Solid Substrates with Different Charge Density. ACS Applied Materials & Interfaces, 2011, 3, 3181-3188.	8.0	50
32	A Physicochemical Characterization of the Interaction between DC-Chol/DOPE Cationic Liposomes and DNA. Journal of Physical Chemistry B, 2008, 112, 12555-12565.	2.6	48
33	Effect of molecular structure of eco-friendly glycolipid biosurfactants on the adsorption of hair-care conditioning polymers. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110578.	5.0	48
34	Evidence of the influence of adsorption kinetics on the internal reorganization of polyelectrolyte multilayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384, 274-281.	4.7	47
35	Mechanism of reaction of hydroxide ion with dinitrochlorobenzenes. Journal of the American Chemical Society, 1991, 113, 238-246.	13.7	46
36	Influence of the percentage of acetylation on the assembly of LbL multilayers of poly(acrylic acid) and chitosan. Physical Chemistry Chemical Physics, 2011, 13, 18200.	2.8	45

#	Article	IF	CITATIONS
37	Towards understanding the behavior of polyelectrolyte–surfactant mixtures at the water/vapor interface closer to technologically-relevant conditions. Physical Chemistry Chemical Physics, 2018, 20, 1395-1407.	2.8	45
38	Equilibrium and kinetically trapped aggregates in polyelectrolyte–oppositely charged surfactant mixtures. Current Opinion in Colloid and Interface Science, 2020, 48, 91-108.	7.4	45
39	Experimental Study of the Dynamic Properties of Monolayers of PSâ^'PEO Block Copolymers:Â The Attractive Monomer Surface Case. Macromolecules, 2003, 36, 4068-4077.	4.8	43
40	MIRAgel. JAMA Ophthalmology, 2007, 125, 511.	2.4	43
41	Long-Time Relaxation Dynamics of Langmuir Films of a Glass-Forming Polymer: Evidence of Glasslike Dynamics in Two Dimensions. Physical Review Letters, 2004, 92, 255503.	7.8	42
42	Study of the Liquid/Vapor Interfacial Properties of Concentrated Polyelectrolyte–Surfactant Mixtures Using Surface Tensiometry and Neutron Reflectometry: Equilibrium, Adsorption Kinetics, and Dilational Rheology. Journal of Physical Chemistry C, 2018, 122, 4419-4427.	3.1	42
43	Thermodynamic and Spectroscopic Study of a Molecular Rotaxane Containing a Bolaform Surfactant and β-Cyclodextrin. Langmuir, 2001, 17, 1392-1398.	3.5	41
44	Equilibrium Behavior and Dilational Rheology of Polyelectrolyte/Insoluble Surfactant Adsorption Films:Â Didodecyldimethylammonium Bromide and Sodium Poly(styrenesulfonate). Journal of Physical Chemistry B, 2005, 109, 18316-18323.	2.6	41
45	Anomalous Damping of the Capillary Waves at the Airâ^Water Interface of a Soluble Triblock Copolymer. Langmuir, 2003, 19, 2147-2154.	3.5	40
46	Polyelectrolyte Multilayers Containing Triblock Copolymers of Different Charge Ratio. Langmuir, 2010, 26, 11494-11502.	3.5	40
47	Reptation in langmuir polymer monolayers. Soft Matter, 2010, 6, 4407.	2.7	40
48	Shear rheology of fluid interfaces: Closing the gap between macro- and micro-rheology. Current Opinion in Colloid and Interface Science, 2018, 37, 33-48.	7.4	40
49	Surface Rheology of Two-Dimensional Percolating Networks: Langmuir Films of Polymer Pancakes. Physical Review Letters, 2005, 95, 056103.	7.8	39
50	Micellar effects upon rates of SN2 reactions of chloride ion. I. Effects of variations in the hydrophobic tails. The Journal of Physical Chemistry, 1990, 94, 5062-5068.	2.9	36
51	Crossover critical phenomena in an aqueous electrolyte solution: Light scattering, density and viscosity of the 3-methylpyridine+water+NaBr system. Journal of Chemical Physics, 2003, 119, 4428-4436.	3.0	36
52	Adsorption of Water-Soluble Polymers with Surfactant Character. Dilational Viscoelasticity. Langmuir, 2007, 23, 3802-3808.	3.5	36
53	Adsorption of poly(diallyldimethylammonium chloride)—sodium methyl-cocoyl-taurate complexes onto solid surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 505, 150-157.	4.7	36
54	Micellar effects upon rates of SN2 reactions of chloride ion. II. Effects of cationic headgroups. The Journal of Physical Chemistry, 1990, 94, 5068-5073.	2.9	35

#	Article	IF	CITATIONS
55	Critical behavior of ionic micellar systems at different salt concentrations. Journal of Chemical Physics, 1994, 101, 6874-6879.	3.0	35
56	Salt effects on the air/solution interfacial properties of PEO-containing copolymers: Equilibrium, adsorption kinetics and surface rheological behavior. Journal of Colloid and Interface Science, 2013, 400, 49-58.	9.4	35
57	Formation of surfactant free microemulsions in the ternary system water/eugenol/ethanol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 521, 133-140.	4.7	35
58	Single-electron transfer in aromatic nucleophilic substitution on dinitrobenzonitriles. Journal of the American Chemical Society, 1992, 114, 7708-7718.	13.7	34
59	Rheology of a Miscible Polymer Blend at the Airâ~'Water Interface. Quasielastic Surface Light Scattering Study and Analysis in Terms of Static and Dynamic Scaling Laws. Journal of Physical Chemistry B, 1999, 103, 2061-2071.	2.6	34
60	Molecular Weight Dependence of the Shear Rheology of Poly(methyl methacrylate) Langmuir Films: A Comparison between Two Different Rheometry Techniques. Langmuir, 2009, 25, 7393-7400.	3.5	34
61	Polyelectrolyte Multilayers on Soft Colloidal Nanosurfaces: A New Life for the Layer-By-Layer Method. Polymers, 2021, 13, 1221.	4.5	34
62	Viscoelastic Behavior of 1-Dodecanol Monolayers Undergoing a Liquidâ^'Solid Phase Transition. A Surface Quasielastic Light Scattering Study. Langmuir, 2000, 16, 6657-6666.	3.5	33
63	Equilibration of a Polycation–Anionic Surfactant Mixture at the Water/Vapor Interface. Langmuir, 2018, 34, 7455-7464.	3.5	33
64	Phase Behavior of Dense Colloidal Binary Monolayers. Langmuir, 2012, 28, 16555-16566.	3.5	32
65	Effect of a natural amphoteric surfactant in the bulk and adsorption behavior of polyelectrolyte-surfactant mixtures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124178.	4.7	32
66	Deposition of Synthetic and Bio-Based Polycations onto Negatively Charged Solid Surfaces: Effect of the Polymer Cationicity, Ionic Strength, and the Addition of an Anionic Surfactant. Colloids and Interfaces, 2020, 4, 33.	2.1	32
67	Magnetic Microwire Probes for the Magnetic Rod Interfacial Stress Rheometer. Langmuir, 2015, 31, 1410-1420.	3.5	31
68	A broad perspective to particle-laden fluid interfaces systems: from chemically homogeneous particles to active colloids. Advances in Colloid and Interface Science, 2022, 302, 102620.	14.7	31
69	Equilibrium and dynamic surface properties of trisiloxane aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 365, 199-203.	4.7	30
70	Interaction of nitroarenes with hydroxide ion. An AM1 molecular orbital treatment. Journal of the American Chemical Society, 1989, 111, 1041-1047.	13.7	28
71	Rheology of poly(methyl methacrylate) Langmuir monolayers: Percolation transition to a soft glasslike system. Journal of Chemical Physics, 2011, 134, 104704.	3.0	28
72	Thermo- and soluto-capillarity: Passive and active drops. Advances in Colloid and Interface Science, 2017, 247, 52-80.	14.7	28

#	Article	IF	CITATIONS
73	Two Different Scenarios for the Equilibration of Polycation—Anionic Solutions at Water–Vapor Interfaces. Coatings, 2019, 9, 438.	2.6	28
74	Static and dynamic light scattering study of strongly interacting micelles: hypernetted chain vs dilute gas approximation. The Journal of Physical Chemistry, 1990, 94, 501-504.	2.9	27
75	Aggregation Process of the Mixed Ternary System Dodecylethyldimethylammonium Bromide/Dodecylpyridinium Chloride/H2O:à€‰ An Experimental and Theoretical Approach. Langmuir, 2003, 19, 4923-4932.	3.5	27
76	Impact of the bulk aggregation on the adsorption of oppositely charged polyelectrolyte-surfactant mixtures onto solid surfaces. Advances in Colloid and Interface Science, 2020, 282, 102203.	14.7	27
77	Influence of the molecular architecture on the adsorption onto solid surfaces: comb-like polymers. Physical Chemistry Chemical Physics, 2011, 13, 16416.	2.8	26
78	Evaporation kinetics of sessile droplets of aqueous suspensions of inorganic nanoparticles. Journal of Colloid and Interface Science, 2013, 403, 49-57.	9.4	26
79	Evaporation of Nanosuspensions on Substrates with Different Hydrophobicity. ACS Applied Materials & Interfaces, 2018, 10, 3082-3093.	8.0	25
80	Surfactant-Like Behavior for the Adsorption of Mixtures of a Polycation and Two Different Zwitterionic Surfactants at the Water/Vapor Interface. Molecules, 2019, 24, 3442.	3.8	25
81	Thermoelastic behaviour of polyvinylacetate monolayers at the air-water interface: Evidences for liquid-solid phase transition. European Physical Journal B, 2000, 13, 745-754.	1.5	24
82	Fluid to soft-glass transition in a quasi-2D system: thermodynamic and rheological evidences for a Langmuir monolayer. Physical Chemistry Chemical Physics, 2011, 13, 9534.	2.8	24
83	Adsorption of β-Casein–Surfactant Mixed Layers at the Air–Water Interface Evaluated by Interfacial Rheology. Journal of Physical Chemistry B, 2012, 116, 4898-4907.	2.6	24
84	Oil-In-Water Microemulsions for Thymol Solubilization. Colloids and Interfaces, 2019, 3, 64.	2.1	23
85	Single-electron transfer in aromatic nucleophilic addition and substitution in aqueous media. Journal of the American Chemical Society, 1988, 110, 3503-3512.	13.7	21
86	Proton exchange and NMR line broadening in aromatic nucleophilic addition and substitution. Journal of the American Chemical Society, 1988, 110, 3495-3503.	13.7	21
87	Capillary Waves in Ionic Surfactant Solutions:Â Effects of the Electrostatic Adsorption Barrier and Analysis in Terms of a New Dispersion Equation. Journal of Physical Chemistry B, 2002, 106, 5636-5644.	2.6	21
88	Dilational rheology of monolayers of a miscible polymer blend: From good- to poor-solvent conditions. European Physical Journal E, 2002, 9, 375-385.	1.6	21
89	Particle-laden fluid/fluid interfaces: physico-chemical foundations. Journal of Physics Condensed Matter, 2021, 33, 333001.	1.8	21
90	Single-electron transfer in aromatic nucleophilic substitution in reaction of 1-substituted 2,4-dinitronaphthalenes with hydroxide ion. Journal of the American Chemical Society, 1988, 110, 3512-3518.	13.7	20

#	Article	IF	CITATIONS
91	Temperature and Concentration Effects on the Equilibrium and Dynamic Behavior of a Langmuir Monolayer: From Fluid to Gel-like Behavior. Langmuir, 2009, 25, 11528-11532.	3.5	20
92	Langmuir monolayers of the zwitterionic surfactant hexadecyl 1-N-l-tryptophan glycerol ether. Journal of Colloid and Interface Science, 2005, 283, 144-152.	9.4	19
93	3D solid supported inter-polyelectrolyte complexes obtained by the alternate deposition of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate). Beilstein Journal of Nanotechnology, 2016, 7, 197-208.	2.8	19
94	Pickering Emulsions: A Novel Tool for Cosmetic Formulators. Cosmetics, 2022, 9, 68.	3.3	19
95	Experimental study of the renormalization of β near a double critical point: The 2-butanol and water system. Physical Review B, 1993, 47, 630-637.	3.2	18
96	Light Scattering and Electrical Conductivity Studies of the Aerosol OT Toluene Waterâ ʾỉInâ ʾ'Oil Microemulsions. Journal of Physical Chemistry B, 2001, 105, 10163-10168.	2.6	18
97	Surface Light-Scattering at the Airâ^'Liquid Interface:Â From Newtonian to Viscoelastic Polymer Solutions. Journal of Physical Chemistry B, 2005, 109, 4694-4699.	2.6	18
98	Build-Up of a 3D Organogel Network within the Bilayer Shell of Nanoliposomes. A Novel Delivery System for Vitamin D ₃ : Preparation, Characterization, and Physicochemical Stability. Journal of Agricultural and Food Chemistry, 2021, 69, 2585-2594.	5.2	18
99	Physico-chemical study of polymer mixtures formed by a polycation and a zwitterionic copolymer in aqueous solution and upon adsorption onto negatively charged surfaces. Polymer, 2021, 217, 123442.	3.8	18
100	Micellar effects upon the reaction of low-spin diimine-iron(II) complexes with hydroxide and cyanide ions. The Journal of Physical Chemistry, 1986, 90, 2408-2413.	2.9	17
101	Equilibrium and dynamics of Langmuir monolayers when the interface is a selective solvent: Polystyrene-b-poly(t-butyl acrylate) block copolymers. Journal of Chemical Physics, 2006, 125, 074706.	3.0	17
102	Preparation and Application in Drug Storage and Delivery of Agarose Nanoparticles. International Journal of Polymer Science, 2018, 2018, 1-9.	2.7	17
103	Fabrication of Robust Capsules by Sequential Assembly of Polyelectrolytes onto Charged Liposomes. Langmuir, 2021, 37, 6189-6200.	3.5	17
104	Dynamics in Ultrathin Films: Particle Tracking Microrheology of Langmuir Monolayers. The Open Physical Chemistry Journal, 2007, 1, 25-32.	0.4	17
105	Environmentally friendly platforms for encapsulation of an essential oil: Fabrication, characterization and application in pests control. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 473-481.	4.7	16
106	Static and Dynamic Selfâ€Assembly of Pearlâ€Likeâ€Chains of Magnetic Colloids Confined at Fluid Interfaces. Small, 2021, 17, e2101188.	10.0	16
107	Dynamic Light Scattering and Infrared Spectroscopic Studies of the Interaction of Poly(vinylpyrrolidone) Polymers with Aerosol OT/Isooctane Water-in-Oil Microemulsions. Langmuir, 1997, 13, 6095-6100.	3.5	15
108	Equilibrium and dynamic surface properties of trisiloxane aqueous solutions. Part 2. Theory and comparison with experiment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 365, 204-209.	4.7	15

#	Article	IF	CITATIONS
109	Dynamicâ€mechanical and light scattering study of the glass transition of poly(vinylacetate) and a poly(vinylacetate) +poly(4â€hydroxystyrene) blend. Journal of Chemical Physics, 1994, 100, 3258-3267.	3.0	14
110	Calorimetric and dielectric study of a blend containing a conductive polymer: poly(3-octylthiophene)+poly(ethylene-co-vinylacetate). Polymer, 1999, 40, 5833-5842.	3.8	14
111	On the autonomous motion of active drops or bubbles. Journal of Colloid and Interface Science, 2018, 527, 180-186.	9.4	14
112	Behavior of the water/vapor interface of chitosan solutions with an anionic surfactant: effect of polymer–surfactant interactions. Physical Chemistry Chemical Physics, 2020, 22, 23360-23373.	2.8	14
113	Polyelectrolyte Multilayered Capsules as Biomedical Tools. Polymers, 2022, 14, 479.	4.5	14
114	Single-electron transfer in deacylation of ethyl dinitrobenzoates. Journal of the American Chemical Society, 1990, 112, 9336-9344.	13.7	13
115	Two-exponential correlation functions near the critical point of a micellar system. Physical Review E, 1998, 58, 2151-2160.	2.1	13
116	An Experimental Study of the Stability and Dynamics of Langmuir Films of Fullerene Derivatives and Their Mixtures with Pentadecanoic Acid. Langmuir, 2001, 17, 3317-3328.	3.5	13
117	Dielectric relaxation of poly(ethylenglycol)- b-poly(propylenglycol)-b-poly(ethylenglycol) copolymers above the glass transition temperature. European Physical Journal E, 2001, 4, 173-182.	1.6	13
118	Structure and size of spontaneously formed aggregates in Aerosol OT/PEG mixtures: Effects of polymer size and composition. Journal of Colloid and Interface Science, 2007, 316, 762-770.	9.4	13
119	Phase Diagram of Fatty Acid Langmuir Monolayers from Rheological Measurements. Langmuir, 2017, 33, 4280-4290.	3.5	13
120	Controlled disassembly of colloidal aggregates confined at fluid interfaces using magnetic dipolar interactions. Journal of Colloid and Interface Science, 2020, 560, 388-397.	9.4	13
121	Collective Transport of Magnetic Microparticles at a Fluid Interface through Dynamic Selfâ€Assembled Lattices. Advanced Functional Materials, 2020, 30, 2002206.	14.9	13
122	Surfactantless Emulsions Containing Eugenol for Imidacloprid Solubilization: Physicochemical Characterization and Toxicity against Insecticide-Resistant Cimex lectularius. Molecules, 2020, 25, 2290.	3.8	13
123	Influence of Carbon Nanosheets on the Behavior of 1,2-Dipalmitoyl-sn-glycerol-3-phosphocholine Langmuir Monolayers. Processes, 2020, 8, 94.	2.8	13
124	Binary phase diagrams of lead(II) n-alkanoates and n-alkanoic acids. Pure and Applied Chemistry, 1992, 64, 65-71.	1.9	12
125	Collective and self-diffusion coefficients in an ionic critical mixture: 3-methylpyridine+water+NaBr. Journal of Chemical Physics, 2005, 122, 104501.	3.0	12
126	Field-induced sublimation in perfect two-dimensional colloidal crystals. Physical Review E, 2014, 89, 012306.	2.1	12

#	Article	IF	CITATIONS
127	Development of an Environmentally Friendly Larvicidal Formulation Based on Essential Oil Compound Blend to Control <i>Aedes aegypti</i> Larvae: Correlations between Physicochemical Properties and Insecticidal Activity. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	12
128	Monolayers of hydrogen-bonded polymer blends at the air-water interface: poly(vinylacetate)+poly (4-hydroxystyrene). Colloid and Polymer Science, 1998, 276, 960-967.	2.1	11
129	Inhibition effect of cationic micelles on the hydrolysis of acetylsalicylic acid. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1983, 80, 543-545.	0.2	11
130	Dynamic Light Scattering from Mixtures of Two Polystyrene Samples in Dilute and Semidilute Solutions. Macromolecules, 1996, 29, 5948-5954.	4.8	10
131	Double-exponential relaxation near the critical point of an ionic micellar system. Physical Review E, 1996, 54, 5302-5308.	2.1	10
132	Study of the Reaction 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane + OH-in Nonionic Micellar Solutions. Langmuir, 1999, 15, 7876-7879.	3.5	10
133	Comment on "Formation of polyelectrolyte multilayers: ionic strengths and growth regimes―by K. Tang and A. M. Besseling, Soft Matter, 2016, 12 , 1032. Soft Matter, 2016, 12, 8460-8463.	2.7	10
134	Enhanced solubilization of an insect juvenile hormone (JH) mimetic (piryproxyfen) using eugenol in water nanoemulsions stabilized by a triblock copolymer of poly(ethylenglycol) and poly(propilenglycol). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 606, 125513.	4.7	10
135	Counterion micellar effects upon the reaction of low-spin diimine iron(II) complexes. Canadian Journal of Chemistry, 1989, 67, 305-309.	1.1	9
136	Experimental study of the approach to a double critical point in the poly(styrene) plus acetone system: Test of fluctuation-isomorphism theory. Physical Review E, 1994, 49, 1404-1410.	2.1	9
137	Critical behaviour of complex systems. Journal of Physics Condensed Matter, 2000, 12, A459-A463.	1.8	9
138	Evaporation of Sessile Droplets of Polyelectrolyte/Surfactant Mixtures on Silicon Wafers. Colloids and Interfaces, 2021, 5, 12.	2.1	9
139	Study of the Dilution-Induced Deposition of Concentrated Mixtures of Polyelectrolytes and Surfactants. Polymers, 2022, 14, 1335.	4.5	9
140	Layer-by-Layer Materials for the Fabrication of Devices with Electrochemical Applications. Energies, 2022, 15, 3399.	3.1	9
141	Multistep reaction analysis. A numerical approach based on relaxation theory. International Journal of Chemical Kinetics, 1988, 20, 195-215.	1.6	8
142	Kinetics of the reaction of tris(4,7-diphenyl-1,10-phenanthroline-disulphonate)iron(II) ion with hydroxide ion in water. Transition Metal Chemistry, 1984, 9, 331-334.	1.4	7
143	Stationary Electric Birefringence of Flexible Polyelectrolyte Solutions: Experimental Evidence of Different Counterion Polarization Mechanisms. Macromolecules, 2009, 42, 5843-5850.	4.8	7
144	Equilibrium and Surface Rheology of Monolayers of Insoluble Polycations with Side Chains. Langmuir, 2009, 25, 12561-12568.	3.5	7

#	Article	IF	CITATIONS
145	Dielectric and molecular dynamics study of the secondary relaxations of poly(styrene-co-methylmethacrylate) copolymers: Influence of the molecular architecture. European Physical Journal E, 2011, 34, 1-14.	1.6	7
146	Adsorption of Mixtures of a Pegylated Lipid with Anionic and Zwitterionic Surfactants at Solid/Liquid. Colloids and Interfaces, 2020, 4, 47.	2.1	7
147	Monolayers of Cholesterol and Cholesteryl Stearate at the Water/Vapor Interface: A Physico-Chemical Study of Components of the Meibum Layer. Colloids and Interfaces, 2021, 5, 30.	2.1	7
148	Nanoemulsions for the Encapsulation of Hydrophobic Actives. Cosmetics, 2021, 8, 45.	3.3	7
149	Pattern Formation upon Evaporation of Sessile Droplets of Polyelectrolyte/Surfactant Mixtures on Silicon Wafers. International Journal of Molecular Sciences, 2021, 22, 7953.	4.1	7
150	Critical behavior of a cationic-surfactant–water–salt system near and far from the Krafft temperature. Physical Review E, 1995, 52, 1871-1876.	2.1	6
151	Magnetic Biohybrid Vesicles Transported by an Internal Propulsion Mechanism. ACS Applied Materials & Interfaces, 2018, 10, 29367-29377.	8.0	6
152	Effect of pressure on the coexistence curve of methanol+n-heptane in the near critical region. Chemical Physics, 1993, 173, 457-466.	1.9	5
153	Micellar effect upon the reaction of tris(4,7-diphenyl-1,10-phenanthrolinedisulphonato)iron(II) ion with hydroxide in water. Transition Metal Chemistry, 1986, 11, 351-355.	1.4	4
154	Concentration Fluctuations and Surface Adsorption in Hydrogen-Bonded Mixtures. Journal of Physical Chemistry B, 2004, 108, 10019-10024.	2.6	4
155	JColloids: Image analysis for video-microscopy studies of colloidal suspensions. Computer Physics Communications, 2018, 231, 243-244.	7.5	4
156	Stratified Interpolyelectrolyte Complexes: Fabrication, Structure and Properties. Engineering Materials, 2014, , 299-347.	0.6	4
157	Performance of Oleic Acid and Soybean Oil in the Preparation of Oil-in-Water Microemulsions for Encapsulating a Highly Hydrophobic Molecule. Colloids and Interfaces, 2021, 5, 50.	2.1	4
158	Modular Interfacial Microswimmers. Physical Review Applied, 2021, 16, .	3.8	4
159	Spontaneous Vesicles Modulated by Polymers. Polymers, 2011, 3, 1255-1267.	4.5	3
160	Nonexponential Behavior Near the Critical Point of an Ionic Micellar System. International Journal of Thermophysics, 1999, 20, 1765-1778.	2.1	2
161	Polyelectrolyte assemblies for drug storage and delivery: multilayers, nanocapsules and multicapsules. , 2013, , 94-145.		2
162	Amphiphilic 2-ethyl hexyl methacrylate- <i>b-N</i> , <i>N</i> â€2-dimethylacrylamide diblock copolymer monolayer behaviour at the air â°i water interface ^{ã€} Polymer International 2015, 64, 740-	74 ³ 9 ¹	2

162 monolayer behaviour at the airâ \in a^{2} water interface<sup> $a \in <$ sup> $a \in <$ /sup>. Polymer International, 2015, 64, 740-749.

#	Article	IF	CITATIONS
163	Spreading and Evaporation of Surfactant Solution Droplets. , 2012, , 1-6.		2
164	Rheology Studies Of Spread And Adsorbed Polymer Layers. , 0, , 178-252.		2
165	A complex analysis of kinetic results for the base hydrolysis of iron(II) complexes: An advanced undergraduate kinetic experiment. Journal of Chemical Education, 1986, 63, 448.	2.3	1
166	Micellar Formation by Thallium(I) n-Alkanoates in Water. Langmuir, 1994, 10, 971-973.	3.5	1
167	Partial specific volume of poly(D-β-hydroxybutyrate) in chloroaliphatic solvents. Polymer International, 1995, 36, 9-12.	3.1	1
168	Giant Vesicles with Encapsulated Magnetic Nanowires as Versatile Carriers, Transported via Rotating and Nonhomogeneous Magnetic Fields. Particle and Particle Systems Characterization, 2019, 36, 1900239.	2.3	0
169	Shear Rheology of Interfaces: Micro Rheological Methods. Understanding Complex Systems, 2013, , 183-198.	0.6	0
170	Drops and Bubbles as Controlled Traveling Reactors and/or Carriers Including Microfluidics Aspects. Springer Proceedings in Physics, 2019, , 255-276.	0.2	0
171	Alfonso Rubio y Juan David Murillo Sandoval. Historia de la edición en Colombia 1738-1851 Anuario Colombiano De Historia Social Y De La Cultura, 2019, 46, 322-325.	0.1	0
172	Hyaluronic Acid Hydrogel Particles Obtained Using Liposomes as Templates. Materials Proceedings, 2021, 7, 7.	0.2	0