
## **Gary Parker**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/465922/publications.pdf Version: 2024-02-01



CADY DADKED

| #  | Article                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Surface-based bedload transport relation for gravel rivers. Journal of Hydraulic Research/De<br>Recherches Hydrauliques, 1990, 28, 417-436.                                | 0.7 | 660       |
| 2  | Bend theory of river meanders. Part 1. Linear development. Journal of Fluid Mechanics, 1981, 112, 363.                                                                     | 1.4 | 598       |
| 3  | Self-accelerating turbidity currents. Journal of Fluid Mechanics, 1986, 171, 145.                                                                                          | 1.4 | 566       |
| 4  | Reanalysis and Correction of Bed-Load Relation of Meyer-Peter and Müller Using Their Own Database.<br>Journal of Hydraulic Engineering, 2006, 132, 1159-1168.              | 0.7 | 467       |
| 5  | On the cause and characteristic scales of meandering and braiding in rivers. Journal of Fluid<br>Mechanics, 1976, 76, 457.                                                 | 1.4 | 462       |
| 6  | Self-formed straight rivers with equilibrium banks and mobile bed. Part 2. The gravel river. Journal of<br>Fluid Mechanics, 1978, 89, 127-146.                             | 1.4 | 423       |
| 7  | Entrainment of Bed Sediment into Suspension. Journal of Hydraulic Engineering, 1991, 117, 414-435.                                                                         | 0.7 | 415       |
| 8  | Bedload and Size Distribution in Paved Gravel-Bed Streams. Journal of Hydraulic Engineering, 1982, 108,<br>544-571.                                                        | 0.2 | 371       |
| 9  | Experiments on turbidity currents over an erodible bed. Journal of Hydraulic Research/De Recherches<br>Hydrauliques, 1987, 25, 123-147.                                    | 0.7 | 347       |
| 10 | Physical basis for quasiâ€universal relations describing bankfull hydraulic geometry of singleâ€ŧhread<br>gravel bed rivers. Journal of Geophysical Research, 2007, 112, . | 3.3 | 342       |
| 11 | Selective Sorting and Abrasion of River Gravel. I: Theory. Journal of Hydraulic Engineering, 1991, 117, 131-147.                                                           | 0.7 | 267       |
| 12 | A new framework for modeling the migration of meandering rivers. Earth Surface Processes and Landforms, 2011, 36, 70-86.                                                   | 1.2 | 267       |
| 13 | Self-formed straight rivers with equilibrium banks and mobile bed. Part 1. The sand-silt river. Journal of Fluid Mechanics, 1978, 89, 109-125.                             | 1.4 | 266       |
| 14 | Channel formation by flow stripping: large-scale scour features along the Monterey East Channel and their relation to sediment waves. Sedimentology, 2006, 53, 1265-1287.  | 1.6 | 257       |
| 15 | Natural Processes in Delta Restoration: Application to the Mississippi Delta. Annual Review of Marine Science, 2011, 3, 67-91.                                             | 5.1 | 246       |
| 16 | Experiments on the entrainment of sediment into suspension by a dense bottom current. Journal of<br>Geophysical Research, 1993, 98, 4793-4807.                             | 3.3 | 223       |
| 17 | The dominance of dispersion in the evolution of bed material waves in gravel-bed rivers. Earth Surface<br>Processes and Landforms, 2001, 26, 1409-1420.                    | 1.2 | 209       |
| 18 | Downstream Fining by Selective Deposition in a Laboratory Flume. Science, 1992, 258, 1757-1760.                                                                            | 6.0 | 208       |

| #  | Article                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Linear theory of river meanders. Water Resources Monograph, 1989, , 181-213.                                                                                              | 1.0 | 205       |
| 20 | Alluvial Fans Formed by Channelized Fluvial and Sheet Flow. I: Theory. Journal of Hydraulic<br>Engineering, 1998, 124, 985-995.                                           | 0.7 | 201       |
| 21 | A new vectorial bedload formulation and its application to the time evolution of straight river channels. Journal of Fluid Mechanics, 1994, 267, 153-183.                 | 1.4 | 198       |
| 22 | Transport of Gravel and Sediment Mixtures. , 2008, , 165-251.                                                                                                             |     | 190       |
| 23 | Selective Sorting and Abrasion of River Gravel. II: Applications. Journal of Hydraulic Engineering, 1991, 117, 150-171.                                                   | 0.7 | 187       |
| 24 | Distinguishing sediment waves from slope failure deposits: field examples, including the â€~Humboldt<br>slide', and modelling results. Marine Geology, 2002, 192, 79-104. | 0.9 | 187       |
| 25 | Is It Feasible to Build New Land in the Mississippi River Delta?. Eos, 2009, 90, 373-374.                                                                                 | 0.1 | 178       |
| 26 | Fluvial armor. Journal of Hydraulic Research/De Recherches Hydrauliques, 1990, 28, 529-544.                                                                               | 0.7 | 174       |
| 27 | Large Shift in Source of Fine Sediment in the Upper Mississippi River. Environmental Science &<br>Technology, 2011, 45, 8804-8810.                                        | 4.6 | 171       |
| 28 | Probabilistic Exner Sediment Continuity Equation for Mixtures with No Active Layer. Journal of<br>Hydraulic Engineering, 2000, 126, 818-826.                              | 0.7 | 170       |
| 29 | Channel Dynamics, Sediment Transport, and the Slope of Alluvial Fans: Experimental Study. Journal of<br>Geology, 1998, 106, 677-694.                                      | 0.7 | 158       |
| 30 | Bend theory of river meanders. Part 2. Nonlinear deformation of finite-amplitude bends. Journal of<br>Fluid Mechanics, 1982, 115, 303.                                    | 1.4 | 147       |
| 31 | Experiments on the effect of hydrograph characteristics on vertical grain sorting in gravel bed rivers. Water Resources Research, 2006, 42, .                             | 1.7 | 147       |
| 32 | Flow Resistance and Suspended Load in Sand-Bed Rivers: Simplified Stratification Model. Journal of<br>Hydraulic Engineering, 2004, 130, 796-805.                          | 0.7 | 146       |
| 33 | Normal and anomalous diffusion of gravel tracer particles in rivers. Journal of Geophysical Research, 2010, 115, .                                                        | 3.3 | 145       |
| 34 | Physically based modeling of bedrock incision by abrasion, plucking, and macroabrasion. Journal of<br>Geophysical Research, 2009, 114, .                                  | 3.3 | 144       |
| 35 | On the time development of meander bends. Journal of Fluid Mechanics, 1986, 162, 139.                                                                                     | 1.4 | 141       |
| 36 | Net local removal of floodplain sediment by river meander migration. Geomorphology, 2008, 96, 123-149.                                                                    | 1.1 | 138       |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Fluvio-deltaic sedimentation: A generalized Stefan problem. European Journal of Applied Mathematics, 2000, 11, 433-452.                                                                                                                   | 1.4 | 136       |
| 38 | Purely erosional cyclic and solitary steps created by flow over a cohesive bed. Journal of Fluid Mechanics, 2000, 419, 203-238.                                                                                                           | 1.4 | 135       |
| 39 | Meander Bends of High Amplitude. Journal of Hydraulic Engineering, 1983, 109, 1323-1337.                                                                                                                                                  | 0.7 | 130       |
| 40 | Physical Basis for Quasi-Universal Relationships Describing Bankfull Hydraulic Geometry of Sand-Bed<br>Rivers. Journal of Hydraulic Engineering, 2011, 137, 739-753.                                                                      | 0.7 | 130       |
| 41 | Numerical simulation of river meandering with self-evolving banks. Journal of Geophysical Research<br>F: Earth Surface, 2013, 118, 2208-2229.                                                                                             | 1.0 | 127       |
| 42 | The response of turbidity currents to a canyon–fan transition: internal hydraulic jumps and<br>depositional signatures. Journal of Hydraulic Research/De Recherches Hydrauliques, 2006, 44, 631-653.                                      | 0.7 | 126       |
| 43 | Numerical modeling of erosional and depositional bank processes in migrating river bends with<br>selfâ€formed width: Morphodynamics of bar push and bank pull. Journal of Geophysical Research F:<br>Earth Surface, 2014, 119, 1455-1483. | 1.0 | 126       |
| 44 | Experiments on dispersion of tracer stones under lower-regime plane-bed equilibrium bed load<br>transport. Water Resources Research, 2007, 43, .                                                                                          | 1.7 | 119       |
| 45 | Secondary Flow in Mildly Sinuous Channel. Journal of Hydraulic Engineering, 1989, 115, 289-308.                                                                                                                                           | 0.7 | 116       |
| 46 | Characteristics of Velocity and Excess Density Profiles of Saline Underflows and Turbidity Currents Flowing over a Mobile Bed. Journal of Hydraulic Engineering, 2010, 136, 412-433.                                                      | 0.7 | 115       |
| 47 | Effect of Floodwater Extraction on Mountain Stream Morphology. Journal of Hydraulic Engineering, 2003, 129, 885-895.                                                                                                                      | 0.7 | 113       |
| 48 | Dam Removal Express Assessment Models (DREAM) Journal of Hydraulic Research/De Recherches<br>Hydrauliques, 2006, 44, 291-307.                                                                                                             | 0.7 | 112       |
| 49 | Inception of channelization and drainage basin formation: upstream-driven theory. Journal of Fluid<br>Mechanics, 1995, 283, 341-363.                                                                                                      | 1.4 | 109       |
| 50 | Bed load at low Shields stress on arbitrarily sloping beds: Failure of the Bagnold hypothesis. Water<br>Resources Research, 2002, 38, 31-1-31-16.                                                                                         | 1.7 | 109       |
| 51 | Transfer function for the deposition of poorly sorted gravel in response to streambed aggradation.<br>Journal of Hydraulic Research/De Recherches Hydrauliques, 1996, 34, 35-53.                                                          | 0.7 | 105       |
| 52 | Testing morphodynamic controls on the location and frequency of river avulsions on fans versus<br>deltas: Huanghe (Yellow River), China. Geophysical Research Letters, 2014, 41, 7882-7890.                                               | 1.5 | 103       |
| 53 | Bed‣oad Transport on Transverse Slope. I. Journal of Hydraulic Engineering, 1992, 118, 513-535.                                                                                                                                           | 0.7 | 101       |
| 54 | Mitigating land loss in coastal Louisiana by controlled diversion of Mississippi River sand. Nature<br>Geoscience, 2012, 5, 534-537.                                                                                                      | 5.4 | 100       |

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Bed load at low Shields stress on arbitrarily sloping beds: Alternative entrainment formulation.<br>Water Resources Research, 2003, 39, .                                                                                                     | 1.7 | 99        |
| 56 | Sediment pulses in mountain rivers: 1. Experiments. Water Resources Research, 2003, 39, .                                                                                                                                                     | 1.7 | 99        |
| 57 | Experimental study of bedrock channel alluviation under varied sediment supply and hydraulic conditions. Water Resources Research, 2008, 44, .                                                                                                | 1.7 | 97        |
| 58 | Linear stability analysis of channel inception: downstream-driven theory. Journal of Fluid Mechanics, 2000, 419, 239-262.                                                                                                                     | 1.4 | 94        |
| 59 | Transportational cyclic steps created by flow over an erodible bed. Part 1. Experiments. Journal of<br>Hydraulic Research/De Recherches Hydrauliques, 2005, 43, 488-501.                                                                      | 0.7 | 91        |
| 60 | Bankfull hydraulic geometry of submarine channels created by turbidity currents: Relations between<br>bankfull channel characteristics and formative flow discharge. Journal of Geophysical Research F:<br>Earth Surface, 2013, 118, 216-228. | 1.0 | 90        |
| 61 | Density Stratification Effects in Sand-Bed Rivers. Journal of Hydraulic Engineering, 2004, 130, 783-795.                                                                                                                                      | 0.7 | 89        |
| 62 | Cyclic steps: A phenomenon of supercritical shallow flow from the high mountains to the bottom of the ocean. Journal of Hydro-Environment Research, 2010, 3, 167-172.                                                                         | 1.0 | 84        |
| 63 | Experimental study on selfâ€accelerating turbidity currents. Journal of Geophysical Research, 2009, 114,                                                                                                                                      | 3.3 | 83        |
| 64 | Displacement characteristics of coarse fluvial bed sediment. Journal of Geophysical Research F: Earth<br>Surface, 2013, 118, 155-165.                                                                                                         | 1.0 | 82        |
| 65 | Interaction among alluvial cover, bed roughness, and incision rate in purely bedrock and<br>alluvialâ€bedrock channel. Journal of Geophysical Research F: Earth Surface, 2014, 119, 2123-2146.                                                | 1.0 | 82        |
| 66 | Emplacement of massive turbidites linked to extinction of turbulence in turbidity currents. Nature Geoscience, 2012, 5, 42-45.                                                                                                                | 5.4 | 81        |
| 67 | Progradational sand-mud deltas in lakes and reservoirs. Part 1. Theory and numerical modeling.<br>Journal of Hydraulic Research/De Recherches Hydrauliques, 2003, 41, 127-140.                                                                | 0.7 | 77        |
| 68 | Experiments on upstream-migrating erosional narrowing and widening of an incisional channel caused by dam removal. Water Resources Research, 2004, 40, .                                                                                      | 1.7 | 77        |
| 69 | Formation and maintenance of singleâ€thread tie channels entering floodplain lakes: Observations<br>from three diverse river systems. Journal of Geophysical Research, 2009, 114, .                                                           | 3.3 | 77        |
| 70 | Numerical model linking bed and bank evolution of incisional channel created by dam removal. Water<br>Resources Research, 2007, 43, .                                                                                                         | 1.7 | 75        |
| 71 | The arrested gravel front: stable gravel-sand transitions in rivers Part 2: General numerical solution.<br>Journal of Hydraulic Research/De Recherches Hydrauliques, 1998, 36, 159-182.                                                       | 0.7 | 73        |
| 72 | Variable Shields number model for river bankfull geometry: bankfull shear velocity is<br>viscosity-dependent but grain size-independent. Journal of Hydraulic Research/De Recherches<br>Hydrauliques, 2015, 53, 36-48.                        | 0.7 | 72        |

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Fluvial fan deltas: Linking channel processes with large-scale morphodynamics. Water Resources<br>Research, 2002, 38, 26-1-26-10.                                                             | 1.7 | 67        |
| 74 | The arrested gravel front: stable gravel-sand transitions in rivers Part 1: Simplified analytical solution. Journal of Hydraulic Research/De Recherches Hydrauliques, 1998, 36, 75-100.       | 0.7 | 66        |
| 75 | Turbidity current with a roof: Direct numerical simulation of selfâ€stratified turbulent channel flow<br>driven by suspended sediment. Journal of Geophysical Research, 2009, 114, .          | 3.3 | 66        |
| 76 | The spiral troughs of Mars as cyclic steps. Journal of Geophysical Research E: Planets, 2013, 118, 1835-1857.                                                                                 | 1.5 | 65        |
| 77 | Unravelling the conundrum of river response to rising seaâ€level from laboratory to field. Part II. The<br>Fly–Strickland River system, Papua New Guinea. Sedimentology, 2008, 55, 1657-1686. | 1.6 | 64        |
| 78 | Transportational cyclic steps created by flow over an erodible bed. Part 2. Theory and numerical simulation. Journal of Hydraulic Research/De Recherches Hydrauliques, 2005, 43, 502-514.     | 0.7 | 62        |
| 79 | Vertical sorting and the morphodynamics of bed form-dominated rivers: A modeling framework.<br>Journal of Geophysical Research, 2004, 109, n/a-n/a.                                           | 3.3 | 57        |
| 80 | Fluvial and submarine morphodynamics of laminar and near-laminar flows: a synthesis.<br>Sedimentology, 2010, 57, 1-26.                                                                        | 1.6 | 57        |
| 81 | Do alternate bars affect sediment transport and flow resistance in gravelâ€bed rivers?. Earth Surface<br>Processes and Landforms, 2012, 37, 866-875.                                          | 1.2 | 55        |
| 82 | Mud in rivers transported as flocculated and suspended bed material. Nature Geoscience, 2020, 13, 566-570.                                                                                    | 5.4 | 55        |
| 83 | Delta progradation driven by an advancing sediment source: Coupled theory and experiment describing the evolution of elongated deltas. Water Resources Research, 2009, 45, .                  | 1.7 | 54        |
| 84 | One-dimensional modeling of bed evolution in a gravel bed river subject to a cycled flood<br>hydrograph. Journal of Geophysical Research, 2006, 111, n/a-n/a.                                 | 3.3 | 52        |
| 85 | River morphodynamics with creation/consumption of grain size stratigraphy 2: numerical model.<br>Journal of Hydraulic Research/De Recherches Hydrauliques, 2010, 48, 727-741.                 | 0.7 | 52        |
| 86 | Morphodynamics of a bedrockâ€alluvial meander bend that incises as it migrates outward: approximate solution of permanent form. Earth Surface Processes and Landforms, 2017, 42, 1342-1354.   | 1.2 | 51        |
| 87 | Simple Model of Sediment‣aden Flows. Journal of Hydraulic Engineering, 1986, 112, 356-375.                                                                                                    | 0.7 | 50        |
| 88 | The exceptional sediment load of fine-grained dispersal systems: Example of the Yellow River, China.<br>Science Advances, 2017, 3, e1603114.                                                  | 4.7 | 50        |
| 89 | Alluvial Fans Formed by Channelized Fluvial and Sheet Flow. II: Application. Journal of Hydraulic<br>Engineering, 1998, 124, 996-1004.                                                        | 0.7 | 49        |
| 90 | Nearly pure sorting waves and formation of bedload sheets. Journal of Fluid Mechanics, 1996, 312, 253-278.                                                                                    | 1.4 | 48        |

| #   | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | The cause of advective slowdown of tracer pebbles in rivers: Implementation of Exnerâ€Based Master<br>Equation for coevolving streamwise and vertical dispersion. Journal of Geophysical Research F: Earth<br>Surface, 2016, 121, 623-637. | 1.0 | 48        |
| 92  | Modeling framework for sediment deposition, storage, and evacuation in the floodplain of a meandering river: Theory. Water Resources Research, 2008, 44, .                                                                                 | 1.7 | 47        |
| 93  | Meandering of supraglacial melt streams. Water Resources Research, 1975, 11, 551-552.                                                                                                                                                      | 1.7 | 46        |
| 94  | Bedload transport and bed resistance associated with density and turbidity currents. Sedimentology, 2010, 57, 1463-1490.                                                                                                                   | 1.6 | 46        |
| 95  | Depositional Turbidity Currents in Diapiric Minibasins on the Continental Slope: Formulation and Theory. Journal of Sedimentary Research, 2006, 76, 783-797.                                                                               | 0.8 | 45        |
| 96  | Dam Removal Express Assessment Models (DREAM). Journal of Hydraulic Research/De Recherches<br>Hydrauliques, 2006, 44, 308-323.                                                                                                             | 0.7 | 45        |
| 97  | A model to predict the evolution of a gravel bed river under an imposed cyclic hydrograph and its application to the Trinity River. Water Resources Research, 2011, 47, .                                                                  | 1.7 | 45        |
| 98  | Hydrogeomorphological differentiation between floodplains and terraces. Earth Surface Processes and Landforms, 2018, 43, 218-228.                                                                                                          | 1.2 | 44        |
| 99  | Macro-roughness model of bedrock–alluvial river morphodynamics. Earth Surface Dynamics, 2015, 3,<br>113-138.                                                                                                                               | 1.0 | 43        |
| 100 | Depositional Turbidity Currents in Diapiric Minibasins on the Continental Slope:<br>ExperimentsNumerical Simulation and Upscaling. Journal of Sedimentary Research, 2006, 76, 798-818.                                                     | 0.8 | 42        |
| 101 | On how spatial variations of channel width influence river profile curvature. Geophysical Research<br>Letters, 2016, 43, 6313-6323.                                                                                                        | 1.5 | 42        |
| 102 | Unravelling the conundrum of river response to rising seaâ€level from laboratory to field. Part I:<br>Laboratory experiments. Sedimentology, 2008, 55, 1643-1655.                                                                          | 1.6 | 41        |
| 103 | Effect of Seepage-Induced Nonhydrostatic Pressure Distribution on Bed-Load Transport and Bed<br>Morphodynamics. Journal of Hydraulic Engineering, 2008, 134, 378-389.                                                                      | 0.7 | 41        |
| 104 | Coevolution of width and sinuosity in meandering rivers. Journal of Fluid Mechanics, 2014, 760, 127-174.                                                                                                                                   | 1.4 | 40        |
| 105 | Origin of a Preferential Avulsion Node on Lowland River Deltas. Geophysical Research Letters, 2019, 46, 4267-4277.                                                                                                                         | 1.5 | 39        |
| 106 | A numerical model to develop long-term sediment budgets using isotopic sediment fingerprints.<br>Computers and Geosciences, 2013, 53, 114-122.                                                                                             | 2.0 | 38        |
| 107 | More on the evolution of bed material waves in alluvial rivers. Earth Surface Processes and Landforms, 2005, 30, 107-114.                                                                                                                  | 1.2 | 37        |
| 108 | Vertical sorting and the morphodynamics of bed formâ€dominated rivers: A sorting evolution model.<br>Journal of Geophysical Research, 2008, 113, .                                                                                         | 3.3 | 36        |

| #   | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Shock Fitting of Aggradational Profiles Due to Backwater. Journal of Hydraulic Engineering, 1991, 117, 1129-1144.                                                                                                                                  | 0.7 | 35        |
| 110 | Physically based model of downstream fining in bedrock streams with lateral input. Water Resources Research, 2010, 46, .                                                                                                                           | 1.7 | 35        |
| 111 | Exnerâ€Based Master Equation for transport and dispersion of river pebble tracers: Derivation,<br>asymptotic forms, and quantification of nonlocal vertical dispersion. Journal of Geophysical<br>Research F: Earth Surface, 2014, 119, 1818-1832. | 1.0 | 35        |
| 112 | Direct numerical simulation of stratification effects in a sediment-laden turbulent channel flow.<br>Journal of Turbulence, 2009, 10, N27.                                                                                                         | 0.5 | 34        |
| 113 | Vertical sorting and the morphodynamics of bed-form-dominated rivers: An equilibrium sorting model. Journal of Geophysical Research, 2006, 111, .                                                                                                  | 3.3 | 32        |
| 114 | 10 Adjustment of the bed surface size distribution of gravel-bed rivers in response to cycled hydrographs. Developments in Earth Surface Processes, 2007, , 241-285.                                                                               | 2.8 | 32        |
| 115 | Numerical Simulation of Effects of Sediment Supply on Bedrock Channel Morphology. Journal of<br>Hydraulic Engineering, 2016, 142, .                                                                                                                | 0.7 | 32        |
| 116 | Entrainment and suspension of sand and gravel. Earth Surface Dynamics, 2020, 8, 485-504.                                                                                                                                                           | 1.0 | 32        |
| 117 | Software for evaluating sediment-induced stratification in open-channel flows. Computers and Geosciences, 2013, 53, 94-104.                                                                                                                        | 2.0 | 30        |
| 118 | Turbidity Currents With Equilibrium Basal Driving Layers: A Mechanism for Long Runout. Geophysical<br>Research Letters, 2018, 45, 1518-1526.                                                                                                       | 1.5 | 30        |
| 119 | Modeling Deltaic Lobeâ€Building Cycles and Channel Avulsions for the Yellow River Delta, China.<br>Journal of Geophysical Research F: Earth Surface, 2019, 124, 2438-2462.                                                                         | 1.0 | 30        |
| 120 | Modeling downstream fining in sand-bed rivers. I: formulation. Journal of Hydraulic Research/De<br>Recherches Hydrauliques, 2005, 43, 613-620.                                                                                                     | 0.7 | 28        |
| 121 | Note on the Analysis of Plunging of Density Flows. Journal of Hydraulic Engineering, 2007, 133, 690-694.                                                                                                                                           | 0.7 | 27        |
| 122 | Gravelâ€bed river evolution in earthquakeâ€prone regions subject to cycled hydrographs and repeated sediment pulses. Earth Surface Processes and Landforms, 2017, 42, 2426-2438.                                                                   | 1.2 | 27        |
| 123 | Numerical computation of free meandering channels with the application of slump blocks on the outer bends. Journal of Hydro-Environment Research, 2010, 3, 239-246.                                                                                | 1.0 | 26        |
| 124 | Effects of sand content on initial gravel motion in gravelâ€bed rivers. Earth Surface Processes and Landforms, 2017, 42, 1355-1364.                                                                                                                | 1.2 | 26        |
| 125 | Universal relation with regime transition for sediment transport in fine-grained rivers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 171-176.                                                      | 3.3 | 26        |
| 126 | Cost analysis of water and sediment diversions to optimize land building in the Mississippi River delta.<br>Water Resources Research, 2013, 49, 3388-3405.                                                                                         | 1.7 | 25        |

| #   | Article                                                                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Bed load transport over a broad range of timescales: Determination of three regimes of fluctuations.<br>Journal of Geophysical Research F: Earth Surface, 2014, 119, 2653-2673.                                                                                                                                                     | 1.0 | 25        |
| 128 | Experiments on incipient channelization of submarine fans. Journal of Hydraulic Research/De<br>Recherches Hydrauliques, 2002, 40, 21-32.                                                                                                                                                                                            | 0.7 | 24        |
| 129 | Modeling framework for sediment deposition, storage, and evacuation in the floodplain of a<br>meandering river: Application to the Clark Fork River, Montana. Water Resources Research, 2008, 44, .                                                                                                                                 | 1.7 | 24        |
| 130 | Analytical Solution for Anomalous Diffusion of Bedload Tracers Gradually Undergoing Burial.<br>Journal of Geophysical Research F: Earth Surface, 2019, 124, 21-37.                                                                                                                                                                  | 1.0 | 24        |
| 131 | Modeling flow and sediment transport dynamics in the lowermost Mississippi River, Louisiana, USA, with an upstream alluvialâ€bedrock transition and a downstream bedrockâ€alluvial transition:<br>Implications for land building using engineered diversions. Journal of Geophysical Research F: Earth Surface. 2015, 120, 534-563. | 1.0 | 23        |
| 132 | Incisional cyclic steps of permanent form in mixed bedrockâ€alluvial rivers. Journal of Geophysical<br>Research F: Earth Surface, 2017, 122, 130-152.                                                                                                                                                                               | 1.0 | 22        |
| 133 | Can Bankfull Discharge and Bankfull Channel Characteristics of an Alluvial Meandering River be<br>Cospecified From a Flow Duration Curve?. Journal of Geophysical Research F: Earth Surface, 2019, 124,<br>2381-2401.                                                                                                               | 1.0 | 22        |
| 134 | Flow directionality of pristine meandering rivers is embedded in the skewing of high-amplitude bends<br>and neck cutoffs. Proceedings of the National Academy of Sciences of the United States of America,<br>2019, 116, 23448-23454.                                                                                               | 3.3 | 22        |
| 135 | Channel evolution after dam removal in a poorly sorted sediment mixture: Experiments and numerical model. Water Resources Research, 2014, 50, 8997-9019.                                                                                                                                                                            | 1.7 | 21        |
| 136 | Effect of grain sorting on gravel bed river evolution subject to cycled hydrographs: Bed load sheets<br>and breakdown of the hydrograph boundary layer. Journal of Geophysical Research F: Earth Surface,<br>2017, 122, 1513-1533.                                                                                                  | 1.0 | 21        |
| 137 | Morphodynamic model of the lower Yellow River: flux or entrainment form for sediment mass conservation?. Earth Surface Dynamics, 2018, 6, 989-1010.                                                                                                                                                                                 | 1.0 | 21        |
| 138 | River morphodynamics with creation/consumption of grain size stratigraphy 1: laboratory experiments. Journal of Hydraulic Research/De Recherches Hydrauliques, 2010, 48, 715-726.                                                                                                                                                   | 0.7 | 20        |
| 139 | Controls on gravel termination in seven distributary channels of the Selenga River Delta, Baikal Rift<br>basin, Russia. Bulletin of the Geological Society of America, 2016, 128, 1297-1312.                                                                                                                                        | 1.6 | 20        |
| 140 | Roles of Bank Material in Setting Bankfull Hydraulic Geometry as Informed by the Selenga River Delta,<br>Russia. Water Resources Research, 2019, 55, 827-846.                                                                                                                                                                       | 1.7 | 19        |
| 141 | Modeling turbidity currents with nonuniform sediment and reverse buoyancy. Water Resources Research, 2009, 45, .                                                                                                                                                                                                                    | 1.7 | 18        |
| 142 | Morphodynamics of river bed variation with variable bedload step length. Earth Surface Dynamics, 2014, 2, 243-253.                                                                                                                                                                                                                  | 1.0 | 18        |
| 143 | Morphological evolution of a well onstrained, subaerial–subaqueous source to sink system: Wabush<br>Lake. Sedimentology, 2015, 62, 1636-1664.                                                                                                                                                                                       | 1.6 | 18        |
| 144 | The Influence of Transport Fluctuations on Spatially Averaged Topography on a Sandy, Braided Fluvial<br>Fan. , 1999, , .                                                                                                                                                                                                            |     | 18        |

| #   | Article                                                                                                                                                                                                         | IF    | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 145 | Amplification of downstream flood stage due to damming of fine-grained rivers. Nature Communications, 2022, 13, .                                                                                               | 5.8   | 18        |
| 146 | Probabilistic formulation of conservation of cosmogenic nuclides: effect of surface elevation fluctuations on approach to steady state. Earth Surface Processes and Landforms, 2005, 30, 1127-1144.             | 1.2   | 17        |
| 147 | Planform evolution of deltas with graded alluvial topsets: Insights from threeâ€dimensional tank<br>experiments, geometric considerations and field applications. Sedimentology, 2016, 63, 2158-2189.           | 1.6   | 17        |
| 148 | Cyclic steps on ice. Journal of Geophysical Research F: Earth Surface, 2016, 121, 1023-1048.                                                                                                                    | 1.0   | 17        |
| 149 | Extended Engelund–Hansen type sediment transport relation for mixtures based on the sand-silt-bed<br>Lower Yellow River, China. Journal of Hydraulic Research/De Recherches Hydrauliques, 2019, 57,<br>770-785. | 0.7   | 17        |
| 150 | Extreme Memory of Initial Conditions in Numerical Landscape Evolution Models. Geophysical Research<br>Letters, 2019, 46, 6563-6573.                                                                             | 1.5   | 16        |
| 151 | Turbidity current with a roof: Success and failure of RANS modeling for turbidity currents under strongly stratified conditions. Journal of Geophysical Research F: Earth Surface, 2013, 118, 1975-1998.        | 1.0   | 15        |
| 152 | Sorting of a sand–gravel mixture in a Gilbertâ€ŧype delta. Sedimentology, 2015, 62, 1446-1465.                                                                                                                  | 1.6   | 14        |
| 153 | Basic Principles of River Hydraulics. Journal of Hydraulic Engineering, 1977, 103, 1077-1087.                                                                                                                   | 0.2   | 14        |
| 154 | Self-similar long profiles of aggrading submarine leveed channels: Analytical solution and its application to the Amazon channel. Journal of Geophysical Research, 2011, 116, .                                 | 3.3   | 13        |
| 155 | Experiments on patterns of alluvial cover and bedrock erosion in a meandering channel. Earth<br>Surface Dynamics, 2019, 7, 949-968.                                                                             | 1.0   | 13        |
| 156 | The Advectiveâ€Ðiffusive Morphodynamics of Mixed Bedrockâ€Alluvial Rivers Subjected to<br>Spatiotemporally Varying Sediment Supply. Journal of Geophysical Research F: Earth Surface, 2018, 123,<br>1731-1755.  | 1.0   | 12        |
| 157 | Emergent stationarity in Yellow River sediment transport and the underlying shift of dominance:<br>from streamflow to vegetation. Hydrology and Earth System Sciences, 2019, 23, 549-556.                       | 1.9   | 12        |
| 158 | Can magic sand cause massive degradation of a gravel-bed river at the decadal scale? Shi‑ting River,<br>China. Geomorphology, 2019, 327, 147-158.                                                               | 1.1   | 12        |
| 159 | Numerical simulation of largeâ€scale bed load particle tracer advectionâ€dispersion in rivers with free bars. Journal of Geophysical Research F: Earth Surface, 2017, 122, 847-874.                             | 1.0   | 11        |
| 160 | Froude scaling limitations in modeling of turbidity currents. Environmental Fluid Mechanics, 2017, 17, 159-186.                                                                                                 | 0.7   | 11        |
| 161 | Landscape evolution models using the stream power incision model show unrealistic behavior when<br><i>m</i> â^• <i>n</i> equals 0.5. Earth Sur<br>Dynamics, 2017, 5, 807-820.                                   | faceo | 11        |
| 162 | Adjustment of selfâ€formed bankfull channel geometry of meandering rivers: modelling study. Earth<br>Surface Processes and Landforms, 2020, 45, 3313-3322.                                                      | 1.2   | 11        |

| #   | Article                                                                                                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | The role of lateral erosion in the evolution of nondendritic drainage networks to dendricity and the persistence of dynamic networks. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                                                                                                                                  | 3.3 | 11        |
| 164 | Numerical Simulations of Meanders Migrating Laterally as They Incise Into Bedrock. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF005645.                                                                                                                                                                                                       | 1.0 | 10        |
| 165 | Quantitative Testing of Model of Bedrock Channel Incision by Plucking and Macroabrasion. Journal of<br>Hydraulic Engineering, 2011, 137, 1311-1317.                                                                                                                                                                                                                  | 0.7 | 9         |
| 166 | Sediment mobility and bed armoring in the St Clair River: insights from hydrodynamic modeling. Earth Surface Processes and Landforms, 2012, 37, 957-970.                                                                                                                                                                                                             | 1.2 | 9         |
| 167 | Hydraulic resistance in mixed bedrock-alluvial meandering channels. Journal of Hydraulic Research/De<br>Recherches Hydrauliques, 2021, 59, 298-313.                                                                                                                                                                                                                  | 0.7 | 9         |
| 168 | Co-evolving delta faces under the condition of a moving sediment source. Journal of Hydraulic<br>Research/De Recherches Hydrauliques, 2011, 49, 42-54.                                                                                                                                                                                                               | 0.7 | 8         |
| 169 | Morphodynamic modeling of the basal boundary of ice cover on brackish lakes. Journal of Geophysical Research F: Earth Surface, 2013, 118, 1432-1442.                                                                                                                                                                                                                 | 1.0 | 8         |
| 170 | Theory for a clinoform of permanent form on a continental margin emplaced by weak, dilute muddy turbidity currents. , 2006, , .                                                                                                                                                                                                                                      |     | 8         |
| 171 | Internal connectivity of meandering rivers: Statistical generalization of channel hydraulic geometry.<br>Water Resources Research, 2015, 51, 7485-7500.                                                                                                                                                                                                              | 1.7 | 7         |
| 172 | <b>Closure to</b> "Variable Shields number model for river bankfull geometry: bankfull shear velocity is viscosity-dependent but grain size-independent―by CHUAN LI, MATTHEW J. CZAPIGA, ESTHER C. EKE, ENRICA VIPARELLI, and GARY PARKER, <i>J. Hydraulic Res.</i> S3(1), 2015, 36–48. Journal of Hydraulic Research/De Recherches Hydrauliques, 2016, 54, 234-237. | 0.7 | 7         |
| 173 | Bankfull Shields number versus slope and grain size. Journal of Hydraulic Research/De Recherches<br>Hydrauliques, 2019, 57, 760-769.                                                                                                                                                                                                                                 | 0.7 | 7         |
| 174 | Bedrock-alluvial streams with knickpoint and plunge pool that migrate upstream with permanent form. Scientific Reports, 2019, 9, 6176.                                                                                                                                                                                                                               | 1.6 | 7         |
| 175 | Suspended Sedimentâ€Induced Stratification Inferred From Concentration and Velocity Profile<br>Measurements in the Lower Yellow River, China. Water Resources Research, 2022, 58, e2020WR027192.                                                                                                                                                                     | 1.7 | 7         |
| 176 | Grain Sizeâ€Specific Engelundâ€Hansen Type Relation for Bed Material Load in Sandâ€Bed Rivers, With<br>Application to the Mississippi River. Water Resources Research, 2021, 57, e2020WR027517.                                                                                                                                                                      | 1.7 | 7         |
| 177 | A simplified approach to address turbulence modulation in turbidity currents as a response to slope breaks and loss of lateral confinement. Environmental Fluid Mechanics, 2014, 14, 371-385.                                                                                                                                                                        | 0.7 | 6         |
| 178 | The role of saltwater and waves in continental shelf formation with seaward migrating clinoform.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1266-1273.                                                                                                                                                           | 3.3 | 6         |
| 179 | How canyons evolve by incision into bedrock: Rainbow Canyon, Death Valley National Park, United<br>States. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117,<br>14730-14737.                                                                                                                                               | 3.3 | 6         |
| 180 | Prediction of Margin Stratigraphy. , 0, , 459-529.                                                                                                                                                                                                                                                                                                                   |     | 5         |

180 Prediction of Margin Stratigraphy., 0,, 459-529.

| #   | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Emplacement of massive deposits by sheet flow. Sedimentology, 2020, 67, 1951-1972.                                                                                                                                                                       | 1.6 | 5         |
| 182 | Poyang and Dongting Lakes, Yangtze River: tributary lakes blocked by main-stem aggradation.<br>Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .                                                             | 3.3 | 5         |
| 183 | Upper Mississippi River Flow and Sediment Characteristics and Their Effect on a Harbor Siltation Case.<br>Journal of Hydraulic Engineering, 2018, 144, 04018066.                                                                                         | 0.7 | 4         |
| 184 | Erosional Cyclic Steps Governed by Plunge Pool Erosion: A Parametric Study Based on Field,<br>Laboratory, and Model Data. Journal of Geophysical Research F: Earth Surface, 2021, 126,<br>e2020JF006034.                                                 | 1.0 | 4         |
| 185 | CYCLIC STEP MORPHOLOGY FORMED ON BEDROCK. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2012, 68, I_955-I_960.                                                                                                             | 0.0 | 3         |
| 186 | Response of the Minnesota River to Variant Sediment Loading. Journal of Hydraulic Engineering, 2020,<br>146, .                                                                                                                                           | 0.7 | 3         |
| 187 | Modelling deltaic progradation constrained by a moving sediment source. Journal of Hydraulic Research/De Recherches Hydrauliques, 2013, 51, 284-292.                                                                                                     | 0.7 | 2         |
| 188 | Reply to comment by J. Peakall et al. on "A simple model for vertical profiles of velocity and suspended<br>sediment concentration in straight and curved submarine channels― Journal of Geophysical Research<br>F: Earth Surface, 2014, 119, 2074-2078. | 1.0 | 2         |
| 189 | Laboratory observations on meltwater meandering rivulets on ice. Earth Surface Dynamics, 2021, 9, 253-269.                                                                                                                                               | 1.0 | 2         |
| 190 | River morphological evolution in earthquake-hit region: Effects of floods and pulsed sediment supply. , 2014, , 1275-1281.                                                                                                                               |     | 2         |
| 191 | Initiation of Channel Head Bifurcation by Overland Flow. Journal of Geophysical Research F: Earth<br>Surface, 2017, 122, 2348-2369.                                                                                                                      | 1.0 | 1         |
| 192 | NUMERICAL ANALYSIS THE MIGRATION OF FREE MEANDERING. Journal of Japan Society of Civil Engineers<br>Ser B1 (Hydraulic Engineering), 2012, 68, I_1183-I_1188.                                                                                             | 0.0 | 0         |