
## Stephen J Ebbens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4658748/publications.pdf Version: 2024-02-01



STEDHEN | FRRENS

| #  | Article                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | 3D printable self-propelling sensors for the assessment of water quality via surface tension. Jcis<br>Open, 2022, 5, 100044.                                                    | 3.2  | 6         |
| 2  | 3D inkjet printed self-propelled motors for micro-stirring. Journal of Colloid and Interface Science, 2022, 623, 96-108.                                                        | 9.4  | 7         |
| 3  | <i>C9ORF72</i> -derived poly-GA DPRs undergo endocytic uptake in iAstrocytes and spread to motor<br>neurons. Life Science Alliance, 2022, 5, e202101276.                        | 2.8  | 6         |
| 4  | Rotating ellipsoidal catalytic micro-swimmers <i>via</i> glancing angle evaporation. Materials<br>Advances, 2021, 2, 7045-7053.                                                 | 5.4  | 4         |
| 5  | Influence of Additives on the <i>In Situ</i> Crystallization Dynamics of Methyl Ammonium Lead Halide<br>Perovskites. ACS Applied Energy Materials, 2021, 4, 1398-1409.          | 5.1  | 11        |
| 6  | Inkjet printing of mammalian cells $\hat{a} \in$ "Theory and applications. Bioprinting, 2021, 23, e00157.                                                                       | 5.8  | 28        |
| 7  | pHâ€Responsive Catalytic Janus Motors with Autonomous Navigation and Cargoâ€Release Functions.<br>Advanced Functional Materials, 2020, 30, 2000324.                             | 14.9 | 16        |
| 8  | Experimental observation of flow fields around active Janus spheres. Nature Communications, 2019, 10, 3952.                                                                     | 12.8 | 67        |
| 9  | Reactive Inkjet Printing and Propulsion Analysis of Silk-based Self-propelled Micro-stirrers. Journal of Visualized Experiments, 2019, , .                                      | 0.3  | 3         |
| 10 | Light-driven locomotion of a centimeter-sized object at the air–water interface: effect of fluid resistance. RSC Advances, 2019, 9, 8333-8339.                                  | 3.6  | 12        |
| 11 | Reactive Inkjet Printing of Functional Silk Stirrers for Enhanced Mixing and Sensing. Small, 2019, 15, e1804213.                                                                | 10.0 | 16        |
| 12 | Symmetrical Catalytically Active Colloids Collectively Induce Convective Flow. Langmuir, 2018, 34, 4307-4313.                                                                   | 3.5  | 16        |
| 13 | A Pickering Emulsion Route to Swimming Active Janus Colloids. Advanced Science, 2018, 5, 1700528.                                                                               | 11.2 | 49        |
| 14 | Catalytic Janus Colloids: Controlling Trajectories of Chemical Microswimmers. Accounts of Chemical<br>Research, 2018, 51, 1931-1939.                                            | 15.6 | 52        |
| 15 | Helical paths, gravitaxis, and separation phenomena for mass-anisotropic self-propelling colloids:<br>Experiment versus theory. Journal of Chemical Physics, 2017, 147, 084905. | 3.0  | 40        |
| 16 | Reactive Inkjet Printing of Biocompatible Enzyme Powered Silk Microâ€Rockets. Small, 2016, 12, 4048-4055.                                                                       | 10.0 | 57        |
| 17 | Reactive Inkjet Printing: Reactive Inkjet Printing of Biocompatible Enzyme Powered Silk Micro-Rockets<br>(Small 30/2016). Small, 2016, 12, 4022-4022.                           | 10.0 | 1         |
| 18 | Spiral diffusion of rotating self-propellers with stochastic perturbation. Physical Review E, 2016, 94, 030601.                                                                 | 2.1  | 24        |

STEPHEN J EBBENS

| #  | Article                                                                                                                                                                           | IF         | CITATIONS    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|
| 19 | Preparation and 3D Tracking of Catalytic Swimming Devices. Journal of Visualized Experiments, 2016, , .                                                                           | 0.3        | Ο            |
| 20 | Active colloids: Progress and challenges towards realising autonomous applications. Current Opinion in Colloid and Interface Science, 2016, 21, 14-23.                            | 7.4        | 144          |
| 21 | Directed Propulsion, Chemotaxis and Clustering in Propelled Microparticles. Current Physical Chemistry, 2015, 5, 91-106.                                                          | 0.2        | 4            |
| 22 | Boundaries can steer active Janus spheres. Nature Communications, 2015, 6, 8999.                                                                                                  | 12.8       | 290          |
| 23 | Effect of Catalyst Distribution on Spherical Bubble Swimmer Trajectories. Journal of Physical<br>Chemistry C, 2015, 119, 15339-15348.                                             | 3.1        | 24           |
| 24 | Mode of lysozyme protein adsorption at end-tethered polyethylene oxide brushes on gold surfaces<br>determined by neutron reflectivity. European Physical Journal E, 2015, 38, 14. | 1.6        | 1            |
| 25 | Glancing angle metal evaporation synthesis of catalytic swimming Janus colloids with well defined angular velocity. Soft Matter, 2015, 11, 6872-6880.                             | 2.7        | 49           |
| 26 | Electrokinetic effects in catalytic platinum-insulator Janus swimmers. Europhysics Letters, 2014, 106,<br>58003.                                                                  | 2.0        | 181          |
| 27 | On the mechanisms of colloidal self-assembly during spin-coating. Soft Matter, 2014, 10, 8804-8812.                                                                               | 2.7        | 51           |
| 28 | Real time laser interference microscopy for barâ€spread polystyrene/poly(methyl methacrylate) blends.<br>Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 985-992.  | 2.1        | 2            |
| 29 | Gravitaxis in Spherical Janus Swimming Devices. Langmuir, 2013, 29, 14066-14073.                                                                                                  | 3.5        | 112          |
| 30 | Direct observation of morphological development during the spin oating of polystyrene–poly(methyl) Tj ET                                                                          | Qq0 0 0 rg | BT_/Overlock |
| 31 | Importance of Particle Tracking and Calculating the Mean-Squared Displacement in Distinguishing Nanopropulsion from Other Processes. Langmuir, 2012, 28, 10997-11006.             | 3.5        | 159          |
| 32 | Synthetic running and tumbling: an autonomous navigation strategy for catalytic nanoswimmers.<br>Soft Matter, 2012, 8, 3077.                                                      | 2.7        | 25           |
| 33 | Copper conductive adhesives for printed circuit interconnects. , 2012, , .                                                                                                        |            | 10           |
| 34 | Size dependence of the propulsion velocity for catalytic Janus-sphere swimmers. Physical Review E, 2012, 85, 020401.                                                              | 2.1        | 189          |
| 35 | <i>lnSitu</i> Imaging and Height Reconstruction of Phase Separation Processes in Polymer<br>Blends during Spin Coating. ACS Nano, 2011, 5, 5124-5131.                             | 14.6       | 65           |
| 36 | Direct Observation of the Direction of Motion for Spherical Catalytic Swimmers. Langmuir, 2011, 27, 12293-12296.                                                                  | 3.5        | 165          |

3

STEPHEN J EBBENS

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Controlling Phoretic Swimmer Trajectory. Materials Research Society Symposia Proceedings, 2011, 1346, 1.                                                                                     | 0.1 | 0         |
| 38 | In pursuit of propulsion at the nanoscale. Soft Matter, 2010, 6, 726.                                                                                                                        | 2.7 | 534       |
| 39 | Self-assembled autonomous runners and tumblers. Physical Review E, 2010, 82, 015304.                                                                                                         | 2.1 | 157       |
| 40 | The Thermal Stability of Alkanethiol Self-Assembled Monolayers on Copper for Fluxless Soldering Applications. IEEE Transactions on Components and Packaging Technologies, 2010, 33, 251-259. | 1.3 | 7         |
| 41 | Covalently Cross-Linked Colloidosomes. Macromolecules, 2010, 43, 10466-10474.                                                                                                                | 4.8 | 98        |
| 42 | Surface Micro-patterning with Self-assembled Monolayers Selectively Deposited on Copper Substrates by Ink-jet Printing. , 2007, , .                                                          |     | 1         |
| 43 | Patterning Copper using Ink Jet Printing of Self Assembled Monolayers. , 2007, , .                                                                                                           |     | 0         |
| 44 | Elastic modulus measurements from individual lactose particles using atomic force microscopy.<br>International Journal of Pharmaceutics, 2007, 332, 168-175.                                 | 5.2 | 58        |
| 45 | Thermal Stability of Self-Assembled Monolayer Copper Preservatives for Fluxless Soldering. , 2006, , .                                                                                       |     | 0         |
| 46 | Determination of the Surface Free Energy of Crystalline and Amorphous Lactose by Atomic Force Microscopy Adhesion Measurement. Pharmaceutical Research, 2006, 23, 401-407.                   | 3.5 | 67        |
| 47 | Investigation of ink-jet printing of self-assembled monolayers for copper circuit patterning. , 2006, , .                                                                                    |     | 2         |
| 48 | Identifying and Mapping Surface Amorphous Domains. Pharmaceutical Research, 2005, 22, 1195-1202.                                                                                             | 3.5 | 65        |
| 49 | Towards nanoscale metrology for biomolecular imaging by atomic force microscopy.<br>Nanotechnology, 2005, 16, 966-973.                                                                       | 2.6 | 27        |
| 50 | Surface Segregation and Plasma Oxidation of Polyethyleneâ^Poly(dimethylsiloxane) Copolymer Doped<br>Polyethylene Films. Macromolecules, 2003, 36, 368-372.                                   | 4.8 | 5         |
| 51 | A study of single drug particle adhesion interactions using atomic force microscopy. International<br>Journal of Pharmaceutics, 2002, 238, 17-27.                                            | 5.2 | 79        |
| 52 | Surface Segregation and Plasma Oxidation of Poly(dimethylsiloxane)-Doped Polyolefins.<br>Macromolecules, 2001, 34, 8149-8155.                                                                | 4.8 | 11        |