Stephen J Ebbens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4658748/publications.pdf

Version: 2024-02-01

257450 233421 3,019 52 24 45 citations g-index h-index papers 53 53 53 2823 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	In pursuit of propulsion at the nanoscale. Soft Matter, 2010, 6, 726.	2.7	534
2	Boundaries can steer active Janus spheres. Nature Communications, 2015, 6, 8999.	12.8	290
3	Size dependence of the propulsion velocity for catalytic Janus-sphere swimmers. Physical Review E, 2012, 85, 020401.	2.1	189
4	Electrokinetic effects in catalytic platinum-insulator Janus swimmers. Europhysics Letters, 2014, 106, 58003.	2.0	181
5	Direct Observation of the Direction of Motion for Spherical Catalytic Swimmers. Langmuir, 2011, 27, 12293-12296.	3.5	165
6	Importance of Particle Tracking and Calculating the Mean-Squared Displacement in Distinguishing Nanopropulsion from Other Processes. Langmuir, 2012, 28, 10997-11006.	3.5	159
7	Self-assembled autonomous runners and tumblers. Physical Review E, 2010, 82, 015304.	2.1	157
8	Active colloids: Progress and challenges towards realising autonomous applications. Current Opinion in Colloid and Interface Science, 2016, 21, 14-23.	7.4	144
9	Gravitaxis in Spherical Janus Swimming Devices. Langmuir, 2013, 29, 14066-14073.	3.5	112
10	Covalently Cross-Linked Colloidosomes. Macromolecules, 2010, 43, 10466-10474.	4.8	98
11	A study of single drug particle adhesion interactions using atomic force microscopy. International Journal of Pharmaceutics, 2002, 238, 17-27.	5.2	79
12	Determination of the Surface Free Energy of Crystalline and Amorphous Lactose by Atomic Force Microscopy Adhesion Measurement. Pharmaceutical Research, 2006, 23, 401-407.	3. 5	67
13	Experimental observation of flow fields around active Janus spheres. Nature Communications, 2019, 10, 3952.	12.8	67
14	Identifying and Mapping Surface Amorphous Domains. Pharmaceutical Research, 2005, 22, 1195-1202.	3.5	65
15	<i>InSitu</i> Imaging and Height Reconstruction of Phase Separation Processes in Polymer Blends during Spin Coating. ACS Nano, 2011, 5, 5124-5131.	14.6	65
16	Elastic modulus measurements from individual lactose particles using atomic force microscopy. International Journal of Pharmaceutics, 2007, 332, 168-175.	5.2	58
17	Reactive Inkjet Printing of Biocompatible Enzyme Powered Silk Microâ€Rockets. Small, 2016, 12, 4048-4055.	10.0	57
18	Catalytic Janus Colloids: Controlling Trajectories of Chemical Microswimmers. Accounts of Chemical Research, 2018, 51, 1931-1939.	15.6	52

#	Article	lF	CITATIONS
19	On the mechanisms of colloidal self-assembly during spin-coating. Soft Matter, 2014, 10, 8804-8812.	2.7	51
20	Glancing angle metal evaporation synthesis of catalytic swimming Janus colloids with well defined angular velocity. Soft Matter, $2015,11,6872-6880.$	2.7	49
21	A Pickering Emulsion Route to Swimming Active Janus Colloids. Advanced Science, 2018, 5, 1700528.	11.2	49
22	Helical paths, gravitaxis, and separation phenomena for mass-anisotropic self-propelling colloids: Experiment versus theory. Journal of Chemical Physics, 2017, 147, 084905.	3.0	40
23	Inkjet printing of mammalian cells – Theory and applications. Bioprinting, 2021, 23, e00157.	5.8	28
24	Towards nanoscale metrology for biomolecular imaging by atomic force microscopy. Nanotechnology, 2005, 16, 966-973.	2.6	27
25	Synthetic running and tumbling: an autonomous navigation strategy for catalytic nanoswimmers. Soft Matter, 2012, 8, 3077.	2.7	25
26	Effect of Catalyst Distribution on Spherical Bubble Swimmer Trajectories. Journal of Physical Chemistry C, 2015, 119, 15339-15348.	3.1	24
27	Spiral diffusion of rotating self-propellers with stochastic perturbation. Physical Review E, 2016, 94, 030601.	2.1	24
28	Direct observation of morphological development during the spinâ€coating of polystyrene–poly(methyl) Tj ET	Qq0 0 0 rş	gBT_/Overlock 22
29	Symmetrical Catalytically Active Colloids Collectively Induce Convective Flow. Langmuir, 2018, 34, 4307-4313.	3.5	16
30	Reactive Inkjet Printing of Functional Silk Stirrers for Enhanced Mixing and Sensing. Small, 2019, 15, e1804213.	10.0	16
31	pHâ€Responsive Catalytic Janus Motors with Autonomous Navigation and Cargoâ€Release Functions. Advanced Functional Materials, 2020, 30, 2000324.	14.9	16
32	Light-driven locomotion of a centimeter-sized object at the air–water interface: effect of fluid resistance. RSC Advances, 2019, 9, 8333-8339.	3.6	12
33	Surface Segregation and Plasma Oxidation of Poly(dimethylsiloxane)-Doped Polyolefins. Macromolecules, 2001, 34, 8149-8155.	4.8	11
34	Influence of Additives on the <i>In Situ</i> Crystallization Dynamics of Methyl Ammonium Lead Halide Perovskites. ACS Applied Energy Materials, 2021, 4, 1398-1409.	5.1	11
35	Copper conductive adhesives for printed circuit interconnects. , 2012, , .		10
36	The Thermal Stability of Alkanethiol Self-Assembled Monolayers on Copper for Fluxless Soldering Applications. IEEE Transactions on Components and Packaging Technologies, 2010, 33, 251-259.	1.3	7

#	Article	IF	CITATIONS
37	3D inkjet printed self-propelled motors for micro-stirring. Journal of Colloid and Interface Science, 2022, 623, 96-108.	9.4	7
38	3D printable self-propelling sensors for the assessment of water quality via surface tension. Jcis Open, 2022, 5, 100044.	3.2	6
39	<i>C9ORF72</i> derived poly-GA DPRs undergo endocytic uptake in iAstrocytes and spread to motor neurons. Life Science Alliance, 2022, 5, e202101276.	2.8	6
40	Surface Segregation and Plasma Oxidation of Polyethyleneâ^Poly(dimethylsiloxane) Copolymer Doped Polyethylene Films. Macromolecules, 2003, 36, 368-372.	4.8	5
41	Directed Propulsion, Chemotaxis and Clustering in Propelled Microparticles. Current Physical Chemistry, 2015, 5, 91-106.	0.2	4
42	Rotating ellipsoidal catalytic micro-swimmers <i>via</i> glancing angle evaporation. Materials Advances, 2021, 2, 7045-7053.	5.4	4
43	Reactive Inkjet Printing and Propulsion Analysis of Silk-based Self-propelled Micro-stirrers. Journal of Visualized Experiments, 2019, , .	0.3	3
44	Investigation of ink-jet printing of self-assembled monolayers for copper circuit patterning. , 2006, , .		2
45	Real time laser interference microscopy for barâ€spread polystyrene/poly(methyl methacrylate) blends. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 985-992.	2.1	2
46	Surface Micro-patterning with Self-assembled Monolayers Selectively Deposited on Copper Substrates by Ink-jet Printing. , 2007, , .		1
47	Mode of lysozyme protein adsorption at end-tethered polyethylene oxide brushes on gold surfaces determined by neutron reflectivity. European Physical Journal E, 2015, 38, 14.	1.6	1
48	Reactive Inkjet Printing: Reactive Inkjet Printing of Biocompatible Enzyme Powered Silk Micro-Rockets (Small 30/2016). Small, 2016, 12, 4022-4022.	10.0	1
49	Thermal Stability of Self-Assembled Monolayer Copper Preservatives for Fluxless Soldering. , 2006, , .		0
50	Patterning Copper using Ink Jet Printing of Self Assembled Monolayers., 2007,,.		0
51	Controlling Phoretic Swimmer Trajectory. Materials Research Society Symposia Proceedings, 2011, 1346, 1.	0.1	0
52	Preparation and 3D Tracking of Catalytic Swimming Devices. Journal of Visualized Experiments, 2016, , .	0.3	0